Higgs theory, radiative corrections and current developments

Johannes Braathen (DESY)

7th International Workshop on "Higgs as a Probe of New Physics 2025" University of Osaka, Japan | 11 June 2025

QUANTUM UNIVERSE

Higgs discovery in 2012: a milestone for Particle Physics

➤ 4th July 2012: discovery of <u>a Higgs boson</u> of mass 125 GeV by ATLAS and CMS collaborations at CERN Large Hadron Collider was a major milestone for Particle Physics

Higgs discovery in 2012: a milestone for Particle Physics

➤ 4th July 2012: discovery of <u>a</u> Higgs boson of mass 125 GeV by ATLAS and CMS collaborations at CERN Large Hadron Collider was a major milestone for Particle Physics

What we know of the Higgs boson so far:

- Its mass M_h=125 GeV, to astonishing ~0.1% precision!
- The electroweak (EW) vacuum expectation value (vev) v=246 GeV
- > Spin 0
- Not purely CP-odd

➤ 4th July 2012: discovery of <u>a</u> Higgs boson of mass 125 GeV by ATLAS and CMS collaborations at CERN Large Hadron Collider was a major milestone for Particle Physics

What we know of the Higgs boson so far:

- Its mass M_h=125 GeV, to astonishing ~0.1% precision!
- The electroweak (EW) vacuum expectation value (vev) v=246 GeV
- > Spin 0
- Not purely CP-odd
- Its couplings to gauge bosons (to O(5%)), to 3^{rd} gen. fermions (to O(10%)), to muons (to O(30%)) \rightarrow so far, **Standard-Model (SM)** -like

ERN-

Higgs discovery in 2012: a milestone for Particle Physics

➤ 4th July 2012: discovery of <u>a</u> Higgs boson of mass 125 GeV by ATLAS and CMS collaborations at CERN Large Hadron Collider was a major milestone for Particle Physics

What we know of the Higgs boson so far:

- Its mass M_h=125 GeV, to astonishing ~0.1% precision!
- The electroweak (EW) vacuum expectation value (vev) v=246 GeV
- > Spin 0
- Not purely CP-odd
- Its couplings to gauge bosons (to O(5%)), to 3^{rd} gen. fermions (to O(10%)), to muons (to O(30%)) \rightarrow so far, **Standard-Model (SM)** -like
- Higgs potential is at the origin of the EW symmetry breaking, and Brout-Englert-Higgs mechanism is origin of known particle masses

Higgs discovery in 2012: a milestone for Particle Physics

4th July 2012: discovery of <u>a</u> Higgs boson of mass 125 GeV by ATLAS and CMS collaborations at CERN Large Hadron Collider was a major milestone for Particle Physics

What we know of the Higgs boson so far:

- Its mass M_h=125 GeV, to astonishing ~0.1% precision!
- The electroweak (EW) vacuum expectation value (vev) v=246 GeV
- > Spin 0
- Not purely CP-odd
- Its couplings to gauge bosons (to O(5%)), to 3^{rd} gen. fermions (to O(10%)), to muons (to O(30%)) \rightarrow so far, **Standard-Model (SM)** -like
- Higgs potential is at the origin of the EW symmetry breaking, and Brout-Englert-Higgs mechanism is origin of known particle masses
- ➤ Particle content of **Standard Model** is "complete"
 - \rightarrow is this the end of the story?

Higgs discovery in 2012: a milestone for Particle Physics 4th July 2012: discovery of a Higgs boson of mass 125 GeV by O ATLAS and CMS collaborations at CERN Large Hadron Collider was a major milestone for Particle Physics What we Its m V_{e} The **ELECTRON** Spin Not Its co O(10 Higg Brou Higgs potential

Open questions and motivation for New Physics

- What we still don't know about the Higgs boson:
 - Its couplings to 1st and 2nd gen. fermions
 - Its total width; BR(h→inv.) < 9%</p>
 - Its CP nature
 - Its fundamental nature (elementary or composite)
 - Structure of the Higgs sector (minimal or extended)
 - Form and origin of the Higgs potential (i.e. <u>why</u> do particles get masses, not just *how*)

Open questions and motivation for New Physics

- What we still don't know about the Higgs boson:
 - > Its couplings to 1st and 2nd gen. fermions
 - Its total width; BR(h→inv.) < 9%</p>
 - Its CP nature
 - Its fundamental nature (elementary or composite)
 - Structure of the Higgs sector (minimal or extended)
 - Form and origin of the Higgs potential (i.e. <u>why</u> do particles get masses, not just <u>how</u>)

- Many further questions remain unanswered, e.g.
 - Gauge hierarchy problem, i.e. why is gravity so much weaker than the other forces (or why is the Planck scale so much higher than the electroweak scale)
 - Reason for 3 fermion families and origin of flavour
 - Origin of matter-antimatter asymmetry of the Universe
 - Dark Matter Etc.

Open questions and motivation for New Physics

- What we still don't know about the Higgs boson: Many further questions remain unanswered, e.g.
 - > Its couplings to 1st and 2nd gen. fermions
 - Its total width; BR(h→inv.) < 9%</p>
 - Its CP nature
 - Its fundamental nature (elementary or composite)
 - Structure of the Higgs sector (minimal or extended)
 - Form and origin of the Higgs potential (i.e. why do particles get masses, not just *how*)

- - Gauge hierarchy problem, i.e. why is gravity so much weaker than the other forces (or why is the Planck scale so much higher than the electroweak scale)
 - Reason for 3 fermion families and origin of flavour
 - Origin of matter-antimatter asymmetry of the Universe
 - Dark Matter Etc.
- ➤ Not addressed by our current best description of Particle Physics, the Standard Model (SM)
 - → New Physics must exist beyond-the-Standard-Model (BSM)!
- Many open problems relate to Higgs sector
 - → the 125-GeV Higgs boson will certainly play a key role in understanding the nature of BSM Physics
 - → BSM models often feature additional Higgs bosons/scalars

The Higgs boson plays a central role to probe New Physics

Outline of the lectures

- Part 1: Higgs as a Probe of New Physics
- Part 2: Some basics on radiative corrections and theory uncertainties
- Part 3: Higgs measurements and precision calculations
- Part 4: Di-Higgs production theory calculations, uncertainties and current developments
- Part 5: Future prospects (brief selection)

Probing New Physics with the Higgs boson

DESY. Page 13

The Higgs boson plays a central role to probe New Physics

Overview of this part:

- hierarchy problems
- form of the Higgs potential
- baryogenesis and electroweak phase transition

In backup:

- more details on hierarchy problems and their solutions
- Higgs portal to dark sectors
- Higgs as inflaton
- neutrino mass models with extended Higgs sectors

Hierarchy problems in Higgs Physics

Parts of the SM Lagrangian involving only gauge bosons and fermions:

$$\mathcal{L} \supset -\frac{1}{4} F^a_{\mu\nu} F^{a,\mu\nu} + \bar{\psi}_i \gamma_\mu D^\mu_{ij} \psi_j$$

Slide adapted from [Salam '23], itself adapted from [Giudice]

→ entirely constrained by gauge symmetry, tested to high precision (e.g. at LEP)

Parts of the SM Lagrangian involving the Higgs field:

[More details on hierarchy problems, and on possible solutions to gauge hierarchy problem in backup]

Quartic Higgs coupling: UV behaviour and vacuum stability

Form of the Higgs potential and trilinear Higgs coupling

Brout-Englert-Higgs mechanism = origin of electroweak symmetry breaking ...
 ... but very little known about the Higgs potential causing the phase transition

Vacuum expectation value

Form of the Higgs potential and trilinear Higgs coupling

➤ Brout-Englert-Higgs mechanism = origin of electroweak symmetry breaking ...

... but very little known about the **Higgs potential** causing the phase transition

> Trilinear Higgs coupling λ_{hhh} crucial to understand the shape of the potential

Vacuum expectation value

Form of the Higgs potential and trilinear Higgs coupling

➤ Brout-Englert-Higgs mechanism = origin of electroweak symmetry breaking ...

... but very little known about the **Higgs potential** causing the phase transition

Trilinear Higgs coupling λ_{hhh} crucial to understand the shape of the potential h

In general:

with
$$\kappa_{\lambda} \equiv \lambda_{hhh}/(\lambda_{hhh}^{(0)})^{\mathrm{SM}}$$
 and $\kappa_{4} \equiv \lambda_{hhhh}/(\lambda_{hhhh}^{(0)})^{\mathrm{SM}}$

Baryogenesis

Observed Baryon Asymmetry of the Universe (BAU)

$$\eta \equiv \frac{n_b - n_{\overline{b}}}{n_\gamma} \simeq 6.1 \times 10^{-10}$$
 [Planck '18]

 n_b : baryon no. density $n_{\overline{b}}$: antibaryon no. density n_v : photon no. density

- Sakharov conditions [Sakharov '67] for a theory to explain BAU:
 - 1) Baryon number violation
 - 2) C and CP violation
 - 3) Loss of thermal equilibrium

Baryogenesis

Observed Baryon Asymmetry of the Universe (BAU)

$$\eta \equiv \frac{n_b - n_{\bar{b}}}{n_\gamma} \simeq 6.1 \times 10^{-10} \quad \text{[Planck '18]}$$

 n_b : baryon no. density $n_{\bar{b}}$: antibaryon no. density $n_{\bar{y}}$: photon no. density

- > **Sakharov conditions** [Sakharov '67] for a theory to explain BAU:
 - 1) Baryon number violation
 - 2) C and CP violation
 - 3) Loss of thermal equilibrium

→ Sphaleron transitions (break B+L)

→ C violation (SM is chiral), but not enough CP violation

 \rightarrow No loss of th. eq. \rightarrow in SM, the EWPT is a crossover

sym. phase

lst order

broken phase

2nd order crossover

m_H

75 GeV

SM cannot reproduce the BAU → BSM physics needed!

Electroweak Baryogenesis

- Many scenarios proposed, including:
 - Grand Unified Theories
 - Leptogenesis
 - Electroweak Baryogenesis (EWBG) [Kuzmin, Rubakov, Shaposhnikov, '85], [Cohen, Kaplan, Nelson '93]
- Sakharov conditions in EWBG
 - 1) Baryon number violation
- → Sphaleron transitions (break B+L)

2) C and CP violation

- → C violation + CP violation in extended Higgs sector
- 3) Loss of thermal equilibrium
- → Loss of th. eq. via a strong 1st order EWPT

[More details on electroweak baryogenesis in backup]

The Higgs potential and the Electroweak Phase Transition

Possible thermal history of the Higgs potential:

- \rightarrow λ_{hhh} determines the nature of the EWPT!
 - \Rightarrow deviation of λ_{hhh} from its SM prediction typically* needed to have a strongly first-order EWPT [Grojean, Servant, Wells '04], [Kanemura, Okada, Senaha '04]

The Higgs potential and the Electroweak Phase Transition

- \rightarrow λ_{hhh} determines the nature of the EWPT!
 - \Rightarrow deviation of λ_{hhh} from its SM prediction typically* needed to have a strongly first-order EWPT [Grojean, Servant, Wells '04], [Kanemura, Okada, Senaha '04]

Radiative corrections 101

DESY. Page 24

Impact of radiative corrections: W-boson mass

- Electroweak precision observables, such as
 - W-boson mass M_w
 - > Effective leptonic weak mixing angle $\rightarrow \sin^2 \theta_{\text{eff}}^{\text{lep}}$
 - Z-boson decay width Γ₇
 - Muon anomalous magnetic moment (g-2)_µ
 etc.

are measured very precisely, and can also be computed to high level of accuracy in terms of G_F , $\alpha(0)$, M_Z (most precisely measured EW quantities) and M_h , M_t , α_S , $\Delta\alpha^{had}$, $\Delta\alpha^{lept}$, m_h , etc.

 \triangleright Relation between M_W, M_Z, G_F, $\alpha(0)$ obtained by matching the calculation of muon decay between the SM and Fermi theory

$$\frac{G_F}{\sqrt{2}} = \frac{e^2}{8M_W^2 s_W^2} (1 + \Delta r) \quad \Rightarrow \quad M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_F} (1 + \Delta r)$$

with $\Delta r \equiv \Delta r(M_W, M_Z, M_h, M_t, ...)$ the corrections to muon decay (w/o finite QED effects)

- Without Δr (loop corrections), M_w ~ 80.9 GeV, i.e. ~40σ away from experimental measurement! One-loop calculation also ~10σ off \rightarrow incorporation of (known) higher orders is essential
- Allows testing the SM as well as BSM models at quantum level DESY. | Lecture on Higgs theory, HPNP | Johannes Braathen (DESY) | 11 June 2025

 M_{μ}^{SM} [GeV]

Figure by G. Weiglein

Page 25

Impact of radiative corrections: h→bb decay

ightharpoonup Decay h → bb already at tree level (driven by bottom Yukawa coupling, prop. to m_b)

$$\Gamma^{(0)}(h \to b\bar{b}) \stackrel{M_h \gg m_b}{=} \frac{3G_F}{4\sqrt{2}\pi} M_h m_b^2$$
 (1)

 \triangleright Large QCD corrections (driven by strong gauge coupling α_s which does not enter at tree level)

$$\hat{\Gamma}(h \to b\bar{b}) \stackrel{M_h \gg m_b}{=} \frac{3G_F}{4\sqrt{2}\pi} M_h m_b^2 \left[1 + \frac{4}{3} \frac{\alpha_s}{\pi} \left(\frac{9}{4} + \frac{3}{2} \log \frac{m_b^2}{M_h^2} \right) + \cdots \right]$$
 (2)

also contains large logs $log(m_b/M_h) \rightarrow can \ spoil \ perturbative$ expansion

> Can be resummed to all orders in α_s (\rightarrow c.f. Effective Field Theories) by expressing the decay width in terms of $\overline{\text{MS}}$ bottom mass

$$\hat{\Gamma}(h \to b\bar{b}) \stackrel{M_h \gg m_b}{=} \frac{3G_F}{4\sqrt{2}\pi} M_h \left(\bar{m}_b^{\overline{\text{MS}}}(M_h)\right)^2 \left[1 + 5.67 \frac{\alpha_s(M_h)}{\pi} + \cdots\right]$$
 (3)

Theoretical uncertainties: sources and estimates

 \triangleright Meaningful theory calculations relate physical observables (e.g. M_W , M_Z , α_{em} , G_F , ...)

Let's write in general: $O = \mathcal{F}(I_1, I_2, \cdots)$

with I_1 , I_2 , ... input parameters

- > 2 main sources of theoretical uncertainties:
 - (1) Unknown higher-order and/or subleading contributions (in some step of the calculation)
 - Example 1: O is computed with a fixed-order calculation as

$$O = \underbrace{\mathcal{F}^{(0)}(I_1,I_2,\cdots)}_{\text{tree level}} + \underbrace{\frac{1}{16\pi^2}\mathcal{F}^{(1)}(I_1,I_2,\cdots)}_{\text{one loop}} + \underbrace{\frac{1}{(16\pi^2)^2}\mathcal{F}^{(2)}(I_1,I_2,\cdots)}_{\text{two loops}} + \cdots$$

- → perturbative expansion *truncated* at some order, higher-orders are unknown
- <u>Example 2</u>: O computed with an Effective-Field-Theory calculation, in terms of parameter g_A obtained from EFT matching, i.e. $O = \tilde{\mathcal{F}}_{EFT}^{(0)}(I_1,g_A,\cdots) + \frac{1}{16\pi^2}\tilde{\mathcal{F}}_{EFT}^{(1)}(I_1,g_A,\cdots) + \cdots$

with EFT matching of g_A : $g_A = \mathcal{G}^{(0)}(I_1, I_2, \cdots, \Lambda_{\text{match.}}) + \frac{1}{16\pi^2} \mathcal{G}^{(1)}(I_1, I_2, \cdots, \Lambda_{\text{match.}})$

 \rightarrow missing higher-orders in EFT calc. + in matching + uncertainty from choice of matching scale Λ_{match}

How to estimate their effect? → renormalisation scheme conversions

→ variations of renormalisation scale or matching scale

Theoretical uncertainties: sources and estimates

 \triangleright Meaningful theory calculations relate physical observables (e.g. M_W , M_Z , α_{em} , G_F , ...)

Let's write in general: $O=\mathcal{F}(I_1,I_2,\cdots)$ with I_1,I_2,\cdots input parameters

- > 2 main sources of theoretical uncertainties:
 - (1) Unknown higher-order and/or subleading contributions (in some step of the calculation)

How to estimate their effect? → renormalisation scheme conversions

→ variations of renormalisation scale or matching scale

- (2) Finite precision with which input parameters are known
 - \rightarrow Assuming (for simplicity) that I₁, I₂, ... are physical observables, their values are obtained from experimental measurements, that have an error/uncertainty

How to estimate this effect? → error propagation (or simply repeat calculation with varied inputs)

e.g.
$$\Delta O = \sqrt{\left(\frac{\partial \mathcal{F}}{\partial I_1}\right)^2 (\Delta I_1)^2 + \left(\frac{\partial \mathcal{F}}{\partial I_2}\right)^2 (\Delta I_2)^2 + \cdots}$$

Experimental errors on I_1 , I_2 , ...

Higgs measurements and precision calculations

 $A h \rightarrow yy \text{ event at}$ CMS

Higgs production at LHC

Diagrams from [CMS Nature '22], Plots from [LHC Higgs WG '16] See also reviews of [Djouadi '05]

> (Single-)Higgs production channels at LHC

Higgs production at LHC

Diagrams from [CMS Nature '22], Plots from [LHC Higgs WG '16] See also reviews of [Djouadi '05]

► (Single-)Higgs production channels at LHC

Higgs decay channels

Decay channels

<u>Loop-induced decays:</u>

Diagrams from [CMS Nature '22]

Example results of Higgs measurements

Example results from ATLAS and CMS 2022
"10-year of the Higgs discovery" Nature papers,
for coupling modifiers (bottom)
or signal strengths (right)

Interpreting experimental results

- Comparison between experiment and theory carried out at the level of:
 - Signal strengths
 - κ parameters (signal strength modifiers)
 - Simplified Template Cross-Sections (STXS)
 - Fiducial cross sections
 - Coefficients of EFT operators
- Requires **high-precision theoretical predictions** (with level of accuracy at least matching that of experimental results)
 - → both in SM and BSM theories
 - → huge efforts from precision calculation communities (QCD, EW, BSM)

Exp. measurement

Total cross section for (inclusive) single-Higgs production, in heavy top limit $(m_t \rightarrow +\infty)$

Figure taken from [Weiglein '22], itself from [Wiesemann '22], based on results from [Anastasiou et al. '15], [Mistlberger '18]

Public tools to confront model predictions with experimental results:

- → HiggsSignals (signal strengths, STXS) [Bechtle et al '13, '20] → now included in HiggsTools [Bahl et al '22]
- Lilith (signal strengths) [Bernon, Dumont '15], [Kraml et al '19], [Bertrand et al '20]

An example calculation of Higgs properties in a BSM model: leading two-loop corrections to $\Gamma(h \rightarrow \gamma \gamma)$ in the Inert Doublet Model

DESY.

The Inert Doublet Model

> 2 SU(2), doublets Φ_{12} of hypercharge $\frac{1}{2}$

$$\Phi_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+h+iG) \end{pmatrix} \quad \text{and} \quad \Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(H+iA) \end{pmatrix}$$

$$\Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(H + iA) \end{pmatrix}$$

► Unbroken Z, symmetry $\Phi_1 \rightarrow \Phi_1$, $\Phi_2 \rightarrow -\Phi_2$

$$V_{\text{IDM}}^{(0)} = \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_2^{\dagger} \Phi_1|^2 + \frac{\lambda_5}{2} \left((\Phi_2^{\dagger} \Phi_1)^2 + \text{h.c.} \right)$$

- Inert scalars H, A, H[±]: charged under Z₂ symmetry (Z₂-odd)
- Model parameters: 3 BSM masses m_{H} , m_{A} , m_{H+} , BSM mass scale μ_{2} , inert doublet quartic self-coupling λ_{2}
- Lightest inert scalar = Dark Matter candidate
 - → assume H here

Drawing by [K. Radchenko

Dark Matter in the Inert Doublet Model

- DM (H) relic density obtained via freeze-out mechanism, while evading current detection bounds
- 2 possible scenarios:
 - → "Higgs resonance scenario" m_H~m_h/2
 - → "Heavy Higgs scenario" m_H≥500 GeV
- IDM testable at current and future experiments via
 - DM direct and indirect searches
 - direct searches at colliders

(see also [JB, Gabelmann, Robens, Stylianou '24])

- precision/indirect tests
 - → properties of h₁₂₅

[Belyaev et al. '16]

Direct detection bounds around Higgs resonance region

Plot made with micrOMEGAs

[Bélanger et al. '18]

Dark Matter in the Inert Doublet Model

- DM (H) relic density obtained via freeze-out mechanism, while evading current detection bounds
- 2 possible scenarios:
 - → "Higgs resonance" scenario m_H~m_h/2
 - → "Heavy Higgs" scenario m_H≥500 GeV
- IDM testable at current and future experiments via
 - DM direct and indirect searches
 - direct searches at colliders

(see also [JB, Gabelmann, Robens, Stylianou '24])

- precision/indirect tests
 - → properties of h₁₂₅

"Higgs resonance" scenario

"Heavy Higgs" scenario

Higgs decay to two photons: existing one-loop results

- DM scenarios of IDM investigated via Higgs properties at one loop (1L) in [Kanemura, Kikuchi, Sakurai '16]
- Additional charged inert Higgs \rightarrow Higgs decay to 2 photons especially important!

$$\Gamma[h \to \gamma \gamma] \simeq \frac{\sqrt{2} G_F \alpha_{\rm EM}^2 m_h^3}{64\pi^3} \left| -\frac{1}{6} \left(1 - \frac{\mu_2^2}{m_{H^{\pm}}^2} \right) + \sum_f Q_f^2 N_c^f I_f[m_h^2] + I_W[m_h^2] \right|^2 \qquad \text{with } m_{H^{\pm}}^2 = \mu_2^2 + \lambda_3 v^2 \,,$$

<u></u>

scenario

 I_f , I_W : fermion/W-boson loops (SM-like)

Charged Higgs contribution:

Compensation between mass dependence of coupling $(\lambda_3=2(m_{H\pm}^2-\mu_2^2)/v^2)$ and of loop function $(C_0\sim1/m_{H\pm}^2)$

- \rightarrow does not decouple when increasing m_{H±}!
- $^{>}$ h → γγ is a loop-induced decay, i.e. **1L** is only leading order (LO)
 - → What about 2L (NLO) corrections?

Higgs Low-Energy Theorem

- Calculation of 2L 3-point functions with external momenta not possible in general
- Assuming m_h << heavy BSM scalar masses, we can employ a Higgs Low-Energy Theorem (see e.g. [Kniehl, Spira '95])
- Compute effective Higgs-photon coupling C_{hyy} of the form

$$\mathcal{L}_{\text{eff}} = -\frac{1}{4} C_{h\gamma\gamma} h F^{\mu\nu} F_{\mu\nu}$$

by taking derivative of (unrenormalised) photon self-energy w.r.t Higgs field

$$C_{h\gamma\gamma} = \frac{\partial}{\partial h} \Pi_{\gamma\gamma} (p^2 = 0) \bigg|_{h=0} \quad \text{where } \Sigma_{\gamma\gamma}^{\mu\nu} (p^2) = (p^2 g^{\mu\nu} - p^{\mu} p^{\nu}) \Pi_{\gamma\gamma} (p^2)$$

- Schematically: $\frac{\partial}{\partial h} \left[- - - \right] = \frac{\int_{---}^{+--}^{+--} h(p^2 = 0)}{\int_{----}^{+---}^{+---} h(p^2 = 0)}$
- Neglects incoming momentum on Higgs leg, but valid for m_h << m_{H,A,H±}

Computing two-loop BSM corrections to Γ(h → yy)

- All known SM contributions:
 - QCD up to 3L [Djouadi '08] (+ refs. therein)
 - EW SM-like to full 2L [Degrassi, Maltoni '05], [Actis et al. '09]
- Our new calculation: leading two-loop BSM contributions
 - genuine, dominant, 2L contributions involving inert scalars (+ SM-like scalars and/or gauge bosons)
 - purely scalar and fermion-scalar contributions to (1L)^2 terms from external-leg and VEV renormalisation

$$C_{h\gamma\gamma}^{(2), \text{ IDM}} = C_{h\gamma\gamma}^{\mathcal{O}(\lambda_3^2)} + C_{h\gamma\gamma}^{\mathcal{O}((\lambda_4 + \lambda_5)^2)} + C_{h\gamma\gamma}^{\mathcal{O}((\lambda_4 - \lambda_5)^2)} + C_{h\gamma\gamma}^{\mathcal{O}(\lambda_2)} + C_{h\gamma\gamma}^{\text{ext.-leg.+VEV}}$$

Example:

 $O(\lambda_3^2)$ diagrams

Photon self-energy diagrams generated with FeynArts, computed with FeynCalc and Tarcer, reduced to (limits of) integrals known analytically; then derivative w.r.t. h taken

Results for the Higgs resonance scenario

Inclusion of two-loop (NLO) corrections significantly reduces the theoretical uncertainty

- **Almost entire scenario** (for $m_{H\pm}$ > 120 GeV) can be ruled out if no deviation is found in h → yy!
- Proper interpretation of experimental results requires inclusion of two-loop corrections!

Di-Higgs production: Theory predictions and uncertainties

DESY. Page 43

Different channels for di-Higgs production

Different channels for di-Higgs production

Leading channel: gluon fusion

Di-Higgs production via gluon fusion: theory progress in SM

[1] Glover, van der Bij 88; [2] Dawson, Dittmaier, Spira 98; [3] Shao, Li, Li, Wang 13; [4] Grigo, Hoff, Melnikov, Steinhauser 13; [5] de Florian, Mazzitelli 13; [6] Grigo, Melnikov, Steinhauser 14; [7] Grigo, Hoff, Steinhauser 14; [7] Grigo, Hoff, Steinhauser 15; [10] de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 16; [11] Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke 16; [12] Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke 16; [12] Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke 16; [13] Ferrera, Pires 16; [14] Heinrich, Jones, Kerner, Luisoni, Vryonidou 17; [15] Jones, Kuttimalai 17; [16] Gröber, Maier, Rauh 17; [17] Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher 18; [18] Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli 18; [19] de Florian, Mazzitelli 18; [20] Bonciani, Degrassi, Giardino, Gröber 18; [21] Davies, Mishima, Steinhauser, Wellmann 18, 18; [22] Mishima 18; [23] Gröber, Maier, Rauh 19; [24] Davies, Heinrich, Jones, Kerner, Mishima, Steinhauser, Davied Wellmann 19; [25] Davies, Steinhauser 19; [26] Chen, Li, Shao, Wang 19, 19; [27] Davies, Herren, Mishima, Steinhauser 19, 21; [28] Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira 21; [29] Bellafronte, Degrassi, Giardino, Gröber, Vitti 22; [30] Davies, Mishima, Schönwald, Steinhauser, Zhang 22; [31] Ajjath, Shao 22; [32] Davies, Mishima, Schönwald, Steinhauser, Zhang 23; [35] Bagnaschi, Degrassi, Gröber 23; [36] Bi, Huang, Huang, Ma Yu 23 [37] Li, Si, Wang, Zhang, Zhao 24; [43] Davies, Schönwald, Steinhauser, Zhang 25; [44] Davies, Schönwald, Steinhauser, Zhang 25; [45] Bonetti, Rendler, Bobadilla 25;

Di-Higgs production via gluon fusion: uncertainty budget

Combination of NLO and N^mLO HTL yields:

• Scale uncertainty of: +2.1% / -4.9%

• PDF + α_s : $\pm 2.2 \%$

• m_T approx: $\pm 2.7 \%$

HWG HH Twiki

[Chen, Li, Shao, Wang 19, 19; Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli 18; de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 16; Maltoni, Vryonidou, Zaro 14; Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke 16; Dawson, Dittmaier, Spira 98; Glover, van der Bij 88]

Converting the top quark mass to the \overline{MS} scheme

$$m_t \to \overline{m}_t(\mu) \left(1 + \frac{\alpha_s(\mu)}{4\pi} C_F \left\{ 4 + 3 \log \left[\frac{\mu^2}{\overline{m}_t(\mu)^2} \right] \right\} \right)$$

This leads to an additional uncertainty related to the choice of the top-quark mass scheme

$$\sqrt{s} = 13 \text{ TeV}: \quad \sigma_{tot} = 27.73(7)^{+4\%}_{-18\%} \text{ fb},$$

 $\sqrt{s} = 14 \text{ TeV}: \quad \sigma_{tot} = 32.81(7)^{+4\%}_{-18\%} \text{ fb},$

Currently: attempts at resumming these large logs by EFT for high-energy limit (SCET = soft collinear effective theory) → [Kaskiewicz et al. '25] → improvement but new uncertainties from matching scale

Large uncertainties in the high-energy limit

[J. Baglio, F. Campanario, S. Glaus, M. Muehlleitner, J. Ronca, M. Spira, J. Streicher, 2003.03227, 2008.11626]

[Slide elements by S. Jaskiewicz]

Di-Higgs production via gluon fusion: evolution of uncertainty

Di-Higgs production in BSM models

Leading order (LO) diagrams (involving top quark) in BSM models

"Non-resonant contributions"

- Standard Model (SM)-like diagrams
- Involves the trilinear self-coupling of $h_{125} \lambda_{hhh}$
 - → probe of the Higgs potential
- Large destructive interference between triangle and box diagram
 - → suppression of cross-section in SM
 - ightarrow large changes in di-Higgs cross-section possible from BSM effects in λ_{hhh}

"Resonant contributions"

- Diagrams involving BSM scalars in s-channel (here generically denoted Φ_i)
- → collider searches for BSM scalars
- Involve BSM trilinear scalar couplings λ_{iik}
- → probe of Higgs potential in extended scalar sectors

Mass splitting effects in λ_{hhh}

First investigation of 1L BSM contributions to λ_{hhh} in 2HDM: [Kanemura, (Kiyoura), Okada, Senaha, Yuan '02, '04]

- Deviations of tens/hundreds of % from SM possible, for large $g_{h\Phi\Phi}$ or $g_{hh\Phi\Phi}$ couplings
- Mass splitting effects, now found in various models (2HDM, inert doublet model, singlet extensions, etc.)

Mass splitting effects in λ_{hhh}

First investigation of 1L BSM contributions to λ_{hhh} in 2HDM: [Kanemura, (Kiyoura), Okada, Senaha, Yuan '02, '04]

- **Deviations of tens/hundreds of % from SM possible,** for large $g_{h\Phi\Phi}$ or $g_{hh\Phi\Phi}$ couplings
- Mass splitting effects, now found in various models (2HDM, inert doublet model, singlet extensions, etc.)

- Large effects confirmed at 2L in [JB, Kanemura '19]
- → leading 2L corrections involving BSM scalars (H,A,H±) and top quark, computed in effective potential approximation

Interference in non-resonant di-Higgs production

Coupling modifier:

$$\kappa_{\lambda} \equiv \frac{\lambda_{hhh}}{(\lambda_{hhh}^{(0)})^{\text{SM}}}$$

Relative change in total cross-section for varying κ_{x}

Differential m_{hh} distributions for varied κ_{x}

Note: impact of change in top Yukawa → overall shift (up/down) of distribution

900

Serdula

Radchenko

Plots by [K.

Di-Higgs production in arbitrary models: anyHH

[Bahl, JB, Gabelmann, Radchenko Serdula, Weiglein *WIP*]

anyHH: Total and differential cross-sections (so far, at LO in QCD*) for gg → hh including 1L corrections to λ_{ijk} (computed by anyH3 [Bahl, JB, Gabelmann, Weiglein '23]) and BSM contributions and momentum-dependence in s-channel diagrams

- > Takes UFO model files as inputs, as anyH3. So far limited to models without additional coloured particles.
- Here: example results for the total di-Higgs cross-section in a model with an additional complex triplet.

Left: total cross-section vs triplet mass in triplet extension of SM Right: differential cross-section in SM, compared with HPAIR + with uncertainty band from factorisation scale in PDFs

- > Other approach: calculations in EFTs, e.g. HEFT, including higher-order QCD corrections
 - → see e.g. [Buchalla et al. '18], [Heinrich et al. '20], [Bagnaschi et al. '23]

Future prospects

DESY. Page 54

Future projections for Higgs coupling measurements

Global fit in SMEFT, using Higgs data, EW precision observables, di-boson data

e.g. [Snowmass Higgs topical report '22]

- → important to properly assess and compare prospects at future colliders
- \rightarrow keep in mind: these numbers also **depend on theoretical uncertainties** (e.g. on calculation of relevant cross-sections) \rightarrow need to be taken into account and estimated realistically!

Future prospects for Higgs coupling measurements

Direct probes of λ_{hhh} at e^+e^- colliders

- > Double-Higgs production, either in e⁺e⁻→Zhh or e⁺e⁻→vvhh
- Relies however on being above the Zhh threshold!

Figure from [De Blas et al. 1905.03764]

Figure from [De Blas et al. 1812.02093]

- e⁺e⁻→Zhh better at √s~500 GeV
- $^{\flat}$ e⁺e⁻ → ννhh better for larger √s

Indirect probes of λ_{hhh} at e⁺e⁻ colliders

- > Below the Zhh threshold, λ_{hhh} can still be investigated through its (indirect) effect in quantum corrections to single-Higgs production
- In particular, λ_{hhh} enters NLO corrections to e⁺e⁻ → Zh
 First pointed out in [McCullough '13], numerous works since (also with global analyses in EFT setting)

Reliable extraction of λ_{hhh} requires a consistent theory framework and control of e⁺e⁻ → Zh calculation (including e.g. effects of other BSM operators, etc.) → work in progress

Figure from [Fujii et al. 1710.07621]

New investigations via triple-Higgs production

Constraining the trilinear and quartic Higgs couplings at the same time

Summary

- Detected Higgs boson, h₁₂₅, plays a central role in investigating the Nature of Physics Beyond the Standard Model
- Exciting times ahead, with **precision measurements of Higgs boson properties** ongoing at LHC and to be continued at future colliders (HL-LHC, e⁺e⁻ colliders, etc.)
- High-precision theory predictions are crucial to properly interpret experimental data in terms of potential discovery, or constraints on the allowed parameter space of New Physics
- Active efforts underway to improve theory calculations in SM and variety of BSM models, with also a push towards automation

Thank you very much for your attention!

Contact

DESY. Deutsches

Elektronen-Synchrotron

www.desy.de

Johannes Braathen

DESY Theory group

Building 2a, Room 208a

johannes.braathen@desy.de

Addendum 1: The need for a Higgs boson

DESY. Page 62

Masses of elementary particles

- > Strong, weak and electromagnetic fundamental interactions described as gauge theories
 - Quantum Chromodynamics (QCD) → SU(3)_c
 - Electroweak (EW) interactions \rightarrow SU(2)_L x U(1)_Y
- ➤ Underlying gauge theories is the principle of **gauge invariance**, which strongly constrains allowed terms in the Lagrangian.

For instance, under a finite local transformation V(x) of a gauge group G, a gauge field A_{μ} transforms as

$$A_{\mu} \xrightarrow{V \in G} VAV^{-1} + \frac{i}{q}V(\partial_{\mu}V^{\dagger})$$

thus a mass term $m_A^2 A_\mu A^\mu$ is forbidden by gauge invariance

➤ Additionally, the currently-known fermions are **chiral**, i.e. weak interactions treat left-handed and right-handed fermions differently → **mass terms for chiral fermions are also forbidden by gauge invariance** e.g.

$$m_e \bar{e}_L e_R + \mathrm{h.c.}$$

 $Y=+1$ $Y=-2$
& part of $SU(2)_L$ doublet & part of $SU(2)_L$ singlet

Remember: $\bar{\psi}=\psi^{\dagger}\begin{pmatrix}0&1\\1&0\end{pmatrix}$

- > How can we explain the **observed masses** of EW gauge bosons and fermions?
 - → Brout-Englert-Higgs mechanism

Brout-Englert-Higgs mechanism

▶ Idea (in its minimal realisation): introduce a scalar* Φ – the Higgs field – doublet under SU(2)_L and with hypercharge Y=+1, and with potential

$$V(\Phi) = \mu^2 |\Phi|^2 + \lambda |\Phi|^4$$

* Why a scalar? → so that it can get a vacuum expectation value without breaking Lorentz symmetry

- \triangleright The potential V(Φ) itself (and thus also the Lagrangian of the theory) obeys the fundamental SU(2)_L x U(1)_Y gauge symmetry but the **vacuum does not**
- In other words, the Higgs field acquires a non-zero vacuum expectation value v that triggers the spontaneous breaking of the EW symmetry (EWSB)

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \longrightarrow \langle \Phi \rangle = \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix}$$

➤ Vacuum remains symmetric under **U(1)**_{QED} gauge group (otherwise there would be charge breaking with strong phenomenological consequences!)

$$SU(2)_L \times U(1)_Y \xrightarrow{\text{EWSB}} U(1)_{\text{QED}}$$

Brout-Englert-Higgs mechanism and particle masses

$$V(\Phi) = \mu^2 |\Phi|^2 + \lambda |\Phi|^4 \quad \lambda > 0 \quad \mu^2 < 0$$

$$SU(2)_L \times U(1)_Y \xrightarrow{\text{EWSB}} U(1)_{\text{QED}}$$

Masses of gauge bosons via scalar kinetic term, with covariant derivative

$$D_{\mu}\Phi = \partial_{\mu}\Phi - \frac{1}{2}i \begin{pmatrix} g_2W_{\mu}^3 + g_YB_{\mu} & \sqrt{2}g_2W_{\mu}^+ \\ \sqrt{2}g_2W_{\mu}^- & -g_2W_{\mu}^3 + g_YB_{\mu} \end{pmatrix} \Phi$$
 with $\Phi = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+h+iG^0) \end{pmatrix}$ h: Higgs boson and $W_{\mu}^{\pm} = \frac{1}{\sqrt{2}}(W_{\mu}^1 \mp iW_{\mu}^2)$ which gives $|D_{\mu}\Phi|^2 \supset \frac{1}{4}g_2^2v^2W_{\mu}^+W^{-\mu} + \frac{1}{4}(g_2^2 + g_Y^2)v^2Z_{\mu}Z^{\mu}$ (\blacksquare) where $Z_{\mu} = \frac{g_2W_{\mu}^3 - g_YB_{\mu}}{\sqrt{g_2^2 + g_Y^2}}$

Before EWSB:

 $\Phi \rightarrow$ 4 degrees of freedom (d.o.f.) + 4 massless gauge bosons of SU(2)_L x U(1)_Y (W_1 , W_2 , W_3 , B) \rightarrow 4x2=8 d.o.f.

 \blacktriangleright After EWSB: would-be Goldstone bosons are "eaten" by gauge bosons which become massive h → 1 d.o.f + 3 massive gauge bosons W[±], Z → 3x3=9 d.o.f + 1 massless photon A → 2 d.o.f.

Exercise: rederive equation (\blacktriangle) + find the expression of the photon A in terms of W_3 and B

Brout-Englert-Higgs mechanism and particle masses

$$V(\Phi) = \mu^2 |\Phi|^2 + \lambda |\Phi|^4 \quad \lambda > 0 \quad \mu^2 < 0$$

$$SU(2)_L \times U(1)_Y \xrightarrow{\text{EWSB}} U(1)_{\text{QED}}$$

Masses of gauge bosons via scalar kinetic term, with covariant derivative

$$D_{\mu}\Phi = \partial_{\mu}\Phi - \frac{1}{2}i \begin{pmatrix} g_{2}W_{\mu}^{3} + g_{Y}B_{\mu} & \sqrt{2}g_{2}W_{\mu}^{+} \\ \sqrt{2}g_{2}W_{\mu}^{-} & -g_{2}W_{\mu}^{3} + g_{Y}B_{\mu} \end{pmatrix} \Phi$$
 with $\Phi = \begin{pmatrix} G^{+} \\ \frac{1}{\sqrt{2}}(v+h+iG^{0}) \end{pmatrix}$ h: Higgs boson and $W_{\mu}^{\pm} = \frac{1}{\sqrt{2}}(W_{\mu}^{1} \mp iW_{\mu}^{2})$ which gives $|D_{\mu}\Phi|^{2} \supset \frac{1}{4}g_{2}^{2}v^{2}W_{\mu}^{+}W^{-\mu} + \frac{1}{4}(g_{2}^{2} + g_{Y}^{2})v^{2}Z_{\mu}Z^{\mu}$ (\blacksquare) where $Z_{\mu} = \frac{g_{2}W_{\mu}^{3} - g_{Y}B_{\mu}}{\sqrt{g_{2}^{2} + g_{Y}^{2}}}$

Masses of fermions (e.g. electron) via Yukawa-interaction term

$$\mathcal{L}\supset -y_e\bar{L}_L\Phi e_R + \text{h.c.} \xrightarrow{\text{EWSB}} -\frac{y_e}{\sqrt{2}}v\bar{e}_Le_R + \text{h.c.}$$

$$\xrightarrow{Y=+1}_{\substack{\text{conjugate of}\\\text{SU(2)}_{\text{L}}\text{ doublet}}} \xrightarrow{Y=-2}_{\substack{\text{SU(2)}_{\text{L}}\text{ singlet}}} v\bar{e}_Le_R + \text{h.c.}$$

Where to find "the" Higgs boson? A unitarity argument

- Higgs-less alternatives to BEH mechanism were also devised (e.g. technicolor)
 - → How to **test** the BEH mechanism? At what scale can the Higgs boson be found?
- \triangleright Consider a massive boson W_u with momentum k^{μ} = (E,0,0,k)
 - \rightarrow 3 possible polarisations such that $k_{\parallel} \cdot \epsilon^{\mu} = 0$ and $\epsilon_{\parallel} \cdot \epsilon^{\mu} = -1$
 - \rightarrow 2 transverse polarisations $\varepsilon_{T_1}^{\mu} = (0,1,0,0), \ \varepsilon_{T_2}^{\mu} = (0,0,1,0)$
 - + 1 longitudinal polarisation $\varepsilon_{l}^{\mu} = (k/M_{W}, 0, 0, E/M_{W}) \sim k^{\mu}/M_{W}$ for E>>M_W
- Consider the 2→2 scattering of longitudinally polarised W bosons W, W, → W, W,
 - → without a Higgs boson, only gauge-boson diagrams like

$$\mathcal{A} \sim g_2^2 \frac{E^2}{M_W^2}$$

 ${\cal A} \sim g_2^2 {E^2 \over M_{
m W}^2}$ Loss of unitarity for large E (from ~M $_{
m W}$ /g $_{
m 2}$)!

→ adding a Higgs boson in the theory:

$$\mathcal{A}_h \sim -g_2^2 \frac{E^2}{M_W^2}$$

$$\Rightarrow \mathcal{A}_{\rm tot} \sim g_2^2 \frac{M_h^2}{M_W^2}$$
 A Higgs boson unitarises the theory if its mass < ~1 TeV

Where to find "the" Higgs boson? A unitarity argument

- Higgs-less alternatives to BEH mechanism were also devised (e.g. technicolor)
 - → How to test the BEH mechanism? At what scale can the Higgs boson be found?
- \triangleright Consider a massive W boson W₁₁ with momentum $k^{\mu} = (E,0,0,k)$

- → either a Higgs boson exists below/around the TeV scale, to unitarise gauge boson scattering in EW gauge theory or
- → some new strong dynamics would appear at ~ TeV scale

In other words, theory guaranteed that the LHC would see something!

→ adding a Higgs boson in the theory:

> Conside

 \rightarrow withd

$$\mathcal{A}_h \sim -g_2^2 \frac{E^2}{M_W^2}$$

$$\Rightarrow \mathcal{A}_{\rm tot} \sim g_2^2 \frac{M_h^2}{M_W^2}$$
 A Higgs boson unitarises the theory if its mass < ~1 TeV

Addendum 2:

Higgs and BSM

- i) Hierarchy problems
- ii) Electroweak baryogenesis
- iii) Higgs portal to dark matter
- iv) Higgs inflation
- v) Neutrino mass models with extended Higgs sectors

DESY. Page 69

Naturalness and the gauge hierarchy problem

- ➤ The EW scale is around m_{EW}^{\sim} 100 GeV (v=246 GeV) while the Planck scale, at which effects of quantum gravity must manifest themselves is M_{Pl}^{\sim} 10¹⁹ GeV \rightarrow why are there 17 orders of magnitude between m_{EW} and M_{Pl}^{\sim} ? \rightarrow (gauge) hierarchy problem
- At a more concrete level, the Higgs mass also poses a technical problem, as it is not **protected** from large (quadratic) corrections unlike for fermions and gauge bosons, nothing forbids scalar mass terms
- \blacktriangleright Let's consider the effect of a heavy BSM fermion ψ , of mass M ~ M_{\rm pl} with a Lagrangian

$${\cal L} \supset ar{\psi} (i \gamma^{\mu} \partial_{\mu} - M) \psi - y_{\psi} ar{\psi} \psi h$$

and let's compute the leading corrections to the Higgs mass in this toy model

$$\Delta^{(1\ell)} m_h^2 = -(-iy_\psi)^2 \int \frac{d^d k}{i(2\pi^2)} \operatorname{tr} \left[\frac{i(\not k + M)}{k^2 - M^2} \frac{i(\not p - \not k) + M)}{(p - k)^2 - M^2} \right]$$

$$\approx -\frac{y_\psi^2}{4\pi^2} M_{\rm Pl}^2 \quad \text{with } p^2 \ll M^2 \quad \& \ Q = M \approx M_{\rm Pl}$$

➤ Getting the Higgs mass right at 125 GeV would imply a tuning between tree-level mass and loop corrections to 32 digits!!! → technical hierarchy problem

Solutions to the gauge hierarchy problem: Supersymmetry

- Supersymmetry (SUSY): [Wess, Zumino '74] and many more Extend space-time symmetry (Poincaré group) by introducing new symmetry between fermions and bosons (SUSY is only option to circumvent Coleman-Mandula theorem [Coleman, Mandula '67], see [Haag, Lopuszanski, Sohnius '75])
 - ightarrow Each fermion (boson) has a bosonic (fermionic) superpartner, with same mass and related couplings, e.g. for toy model of previous slide, ψ has a superpartner $\tilde{\psi}$, with interaction terms

$$\mathcal{L}\supset -y_{\psi}\bar{\psi}\psi h - \lambda_{\tilde{\psi}}\tilde{\psi}^*\tilde{\psi}h^2 \quad \text{ with } \lambda_{\tilde{\psi}}=y_{\psi}^2, \ m_{\tilde{\psi}}=M_{\Psi}=M_{\Pi}$$
 such that
$$+\frac{y_{\psi}^2}{4\pi^2}M_{\Pi}^2 + \cdots + \frac{y_{\psi}^2}{4\pi^2}M_{\Pi}^2 + \cdots + \cdots + \cdots + \cdots = 0$$

- SUSY must be broken, otherwise selectron would have mass 511 keV and would have had to be seen already
- > But SUSY can be broken (super)softly, i.e. without reintroducing quadratic divergences in m,

$$m_{\tilde{\psi}}^2 = M_{\psi}^2 + \Delta m^2$$
 and $\lambda_{\tilde{\psi}} = y_{\psi}^2$

Numerous phenomenological models, such as Minimal Supersymmetric Standard Model (MSSM), Next-to-MSSM (NMSSM), Dirac gaugino models, etc., however so far no sign of SUSY at the LHC...

Solutions to the gauge hierarchy problem: Compositeness

- Compositeness: see e.g. [Agashe, Contino, Pomarol '04], [Giudice, Grojean, Pomarol, Rattazzi '07] + refs therein Light scalars already known in Nature, e.g. pions, but these are *not fundamental*, rather bound or in other words composite states
 - ightarrow Introduce a new strongly coupled sector, with a global symmetry group G, spontaneous broken down to H at a scale f $G \xrightarrow{SSB} H \supset SU(2)_L \times U(1)_Y$ NB: only a part of H is gauged!

→ Higgs boson appears as a pseudo-Goldstone boson → naturally light

Minimal model (1 Higgs doublet):

$$\rightarrow$$
 G = SO(5) (10d); H = SO(4) (6d)

Composite Two-Higgs-Doublet Model:

$$\rightarrow$$
 G = SO(6) (15d); H = SO(4) x SO(2) (7d)

- ➤ Ratio v/f determined by *misalignment* between directions of G/H and SU(2)_LxU(1)_Y/U(1)_{QED} breakings
- Partial compositeness to explain quark mass paterns

Other solutions to the gauge hierarchy problem

- Large Extra-dimensions: [Arkani-Hamed, Dimopoulos, Dvali '98] (see e.g. Randall-Sundrum models, [Randall, Sundrum '99])
 Add at least one more dimension of space-time, which is compactified
 - → tower of excited states (Kaluza-Klein modes)
 - + effective Planck scale in 4d is lowered

- ➤ Gauge-Higgs unification: [Manton '79], [Fairlie '79], [Hosotani '83], etc.
 - Hosotani mechanism: In 5d, a gauge boson contains 5 components
 - → 4 components = 4d gauge boson + 1 component = 4d Higgs boson (which triggers EWSB)
 - → Higgs mass is then again protected by gauge symmetry in 5d
- Cosmological relaxation:

see e.g. [Graham, Kaplan, Rajendran '15], [Espinosa et al. '15]

Promote the Higgs mass term μ^2 to a dynamical field, the **relaxion**, and give this field a potential and interactions with the Higgs boson (and VEV) such that it selects the appropriate value of μ^2

and many more...

 $V(\phi)$

The Yukawa hierarchy problem and flavour

- Fermion mass patterns completely unexplained why is m_t ~ 3 x 10⁵ m_e ? (not to mention neutrinos...)
- Fermion masses in SM → entirely determined by Yukawa couplings between fermions and Higgs boson
 - → why does the Higgs treat the three fermion families (identical w.r.t gauge symmetries) so differently?
- ➤ No guiding principle in Yukawa interactions in SM
- Gauge symmetries act on all three fermion families in the same way → something must treat the families differently → for instance a "horizontal symmetry" ?

The cosmological constant and its fine-tuning problem

- ➤ Cosmological observations → Universe expanding at accelerating pace
- Explained in ΛCDM model by cosmological constant, corresponding to a vacuum energy:

[Planck '15]
$$\rho_{vac} \sim 2.5 \times 10^{-47} \text{ GeV}^4$$

$$V(\Phi) = \mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} + V_{0}$$

$$\longrightarrow V_{\min} = \frac{1}{2} \mu^{2} v^{2} + \frac{1}{4} \lambda v^{4} + V_{0} = -1.2 \times 10^{8} \text{ GeV}^{4} + V_{0} = \rho_{\text{vac}} \sim 2.5 \times 10^{-47} \text{ GeV}^{4}$$

- \triangleright Cancellation/fine-tuning of \sim 55 digits needed in V_0 to reproduce the measured vacuum energy!
 - → cosmological constant problem
- Possible solutions involve anthropic principle (multiverse), modifications of GR/ΛCDM, or of QFT, etc.

Electroweak Baryogenesis – a brief sketch

- Sakharov conditions in EWBG
 - 1) Baryon number violation
 - 2) C and CP violation
 - 3) Loss of thermal equilibrium

- → Sphaleron transitions (break B+L)
- → C violation + CP violation in extended Higgs sector
- → Loss of th. eq. via a strong 1st order EWPT

1) Bubble nucleation

2) Baryon number generation 3) Baryon number conservation

EWBG only involves phenomena around the EW scale \rightarrow testable in the foreseeable future via λ_{hhh} , collider searches, gravitational waves or primordial black holes (sourced by 1st order EWPT)

=igure adapted from [Biermann '22]

Higgs portal to dark sectors

➤ Dark matter (DM)

- Non-relativistic matter (→ can't be neutrinos)
- Only/mostly gravitational interactions → several types of astrophysical evidence (e.g. galaxy rotation curves, etc.)
- · Collisionless (c.f. Bullet cluster) & pressureless
- Needed to seed large-structure formation
- → No SM particle can fit this!
- |Φ|² is a gauge singlet → Higgs field provides a perfect way to write a portal term in the Lagrangian,
 e.g. simplest example = add to SM a singlet S, charged under a global Z₂ symmetry to stabilise DM

$$\mathcal{L}_{\mathbb{Z}_2 ext{SSM}} = \mathcal{L}_{ ext{SM}} - \lambda_{ ext{portal}} S^2 |\Phi|^2 - \lambda_{ ext{dark}} S^4$$
 $\lambda_{ ext{portal}}$: controls DM relic density & detection

➤ Plethora of models: inert singlets, doublets, triplets; Next-to-Two-Higgs-Doublet Model (N2HDM), S2HDM, etc.

Cosmic inflation

[Planck '18]

- Phase of exponential growth driven by scalar field inflaton with very flat potential → slow-roll inflation
- What if the Higgs boson plays the role of the inflaton?
 [Bezrukov, Shaposhnikov '07]
 - → Higgs inflation
 - \rightarrow Higgs coupled **non-minimally** to gravity

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} - rac{1}{2} M_{\mathrm{Pl}}^2 R - \xi |\Phi|^2 R$$
 (in Jordan frame)

Change from *Jordan frame* (in which Lagrangian is written) to *Einstein frame* (with canonical coupling to gravity)

$$g^E_{\mu\nu} = \Omega^2(h)g^J_{\mu\nu}, \qquad \text{with } \Omega^2(h) = 1 + \frac{\xi h^2}{M_{\rm Pl}^2}$$

$$\Rightarrow \mathcal{L}^E \supset -\frac{1}{2}M_{\rm Pl}^2R^E + \frac{1}{2}(\partial_\mu\chi)^2 - \underbrace{\frac{\lambda}{4\Omega^4(h(\chi))}\big(h(\chi)^2 - v^2\big)^2}_{\Xi U(\chi)}$$
 X: Higgs field in Einstein frame

➤ Numerous developments (non-minimal Higgs sectors, different couplings, etc.)

Usual picture of slow-roll inflation

- Phase of exponential growth driven by scalar field inflaton with very flat potential → slow-roll inflation
- What if the Higgs boson plays the role of the inflaton?
 [Bezrukov, Shaposhnikov '07]
 - → Higgs inflation
 - \rightarrow Higgs coupled **non-minimally** to gravity

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} - rac{1}{2} M_{\mathrm{Pl}}^2 R - \xi |\Phi|^2 R$$
 (in Jordan frame)

Change from *Jordan frame* (in which Lagrangian is written) to *Einstein frame* (with canonical coupling to gravity)

$$g^E_{\mu\nu} = \Omega^2(h)g^J_{\mu\nu}, \qquad \text{with } \Omega^2(h) = 1 + \frac{\xi h^2}{M_{\rm Pl}^2}$$

$$\Rightarrow \mathcal{L}^E \supset -\frac{1}{2}M_{\rm Pl}^2R^E + \frac{1}{2}(\partial_\mu\chi)^2 - \underbrace{\frac{\lambda}{4\Omega^4(h(\chi))}\big(h(\chi)^2 - v^2\big)^2}_{\chi: \ \text{Higgs field in Einstein frame}}$$

$$\equiv U(\chi)$$

➤ Numerous developments (non-minimal Higgs sectors, different couplings, etc.)

Usual picture of slow-roll inflation

- Phase of exponential growth driven by scalar field inflaton with very flat potential → slow-roll inflation
- What if the Higgs boson plays the role of the inflaton?
 [Bezrukov, Shaposhnikov '07]
 - → Higgs inflation
 - \rightarrow Higgs coupled **non-minimally** to gravity

$$\mathcal{L} = \mathcal{L}_{ ext{SM}} - rac{1}{2} M_{ ext{Pl}}^2 R - \xi |\Phi|^2 R$$
 (in Jordan frame)

Change from *Jordan frame* (in which Lagrangian is written) to *Einstein frame* (with canonical coupling to gravity)

$$g^E_{\mu\nu} = \Omega^2(h)g^J_{\mu\nu}, \qquad \text{with } \Omega^2(h) = 1 + \frac{\xi h^2}{M_{\rm Pl}^2}$$

$$\Rightarrow \mathcal{L}^E \supset -\frac{1}{2}M_{\rm Pl}^2R^E + \frac{1}{2}(\partial_\mu\chi)^2 - \underbrace{\frac{\lambda}{4\Omega^4(h(\chi))}\big(h(\chi)^2 - v^2\big)^2}_{\Xi U(\chi)}$$
 X: Higgs field in Einstein frame

➤ Numerous developments (non-minimal Higgs sectors, different couplings, etc.)

Usual picture of slow-roll inflation

- Phase of exponential growth driven by scalar field inflaton with very flat potential → slow-roll inflation
- ➤ What if the Higgs boson plays the role of the inflaton? [Bezrukov, Shaposhnikov '07]
 - → Higgs inflation
 - → Higgs coupled **non-minimally** to gravity

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} - rac{1}{2} M_{\mathrm{Pl}}^2 R - \xi |\Phi|^2 R$$
 (in Jordan frame)

Change from *Jordan frame* (in which Lagrangian is written) to *Einstein frame* (with canonical coupling to gravity)

$$g^E_{\mu\nu} = \Omega^2(h)g^J_{\mu\nu}, \qquad \text{with } \Omega^2(h) = 1 + \frac{\xi h^2}{M_{\rm Pl}^2}$$

$$\Rightarrow \mathcal{L}^E \supset -\frac{1}{2}M_{\rm Pl}^2R^E + \frac{1}{2}(\partial_\mu\chi)^2 - \underbrace{\frac{\lambda}{4\Omega^4(h(\chi))}\big(h(\chi)^2 - v^2\big)^2}_{\chi: \ \text{Higgs field in Einstein frame}}$$

$$\equiv U(\chi)$$

Numerous developments (non-minimal Higgs sectors, different couplings, etc.)

Usual picture of slow-roll inflation

- However, since 1960's early signs of neutrino oscillations ("solar neutrino deficit"), eventually confirmed ~25 years ago
 - → atmospheric neutrino oscillations in 1998
 - → solar neutrino oscillations in 2001
 - → 2015 Nobel Prize for Kajita and McDonald

→ neutrinos do have masses → extension of SM needed!

→ basic idea (type I): introduce, heavy, right-handed Majorana neutrinos (RHN) N_R

$$\Rightarrow m_{\nu_L} \sim \frac{y_\nu^2 v^2}{M_R}$$

experimentally

- \rightarrow [Zee '80], [Babu '88], [Aoki, Kanemura, Seto '08], etc.
- → no longer need for very heavy RHN

An example of radiative neutrino mass generation: the **Aoki-Kanemura-Seto model** Figure from [Aoki, Enomoto, Kanemura '22] Page 83

Addendum 3: $M_{\rm w}$ calculations in the SM and beyond

DESY. Page 84

M_w calculation in the SM I

See e.g. [Awramik, Czakon, Freitas, Weiglein '03], [Hessenberger TUM thesis '18]

- Base for MW calculation is the decay of the muon
 - \succ Extract G_F from muon lifetime T_u by computing T_u in the Fermi theory

$$\frac{1}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} F(m_e^2/m_{\mu}^2) \bigg(1 + \frac{3}{5} \frac{m_{\mu}^2}{M_W^2}\bigg) (1 + \Delta q)$$
 with $F(x) \equiv 1 - 8x - 12x^2 \ln x + 8x^3 - x^4$
$$Tree-level \ W \ propagator \ contributions \ (not \ in \ Fermi \ th. \ but \ numerically \ tiny)$$

> Relate M_w, M_z, α, G_F by computing muon decay in SM, and matching to Fermi theory result

$$\frac{G_F}{\sqrt{2}} = \frac{e^2}{8M_W^2 s_W^2} (1+\Delta r) \quad \Rightarrow \quad M_W^2 \left(1-\frac{M_W^2}{M_Z^2}\right) = \frac{\pi\alpha}{\sqrt{2}G_F} (1+\Delta r) \qquad \text{OS scheme}$$

 $\Delta r \equiv \Delta r(M_w, M_z, m_h, m_t, ...)$ denotes corrections to muon decay (w/o finite QED effects)

 \rightarrow Previous relation used to determine M_w as solution, via iterations, of

$$M_W^2 = M_Z^2 \left[\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\pi \alpha}{\sqrt{2} G_F M_Z^2}} \left(1 + \Delta r(M_W^2, M_Z^2, m_h^2, m_t^2, \cdots) \right) \right] \qquad \text{OS scheme}$$

M_w calculation in the SM II

$$\frac{G_F}{\sqrt{2}} = \frac{e^2}{8M_W^2 s_W^2} (1 + \Delta r) \quad \Rightarrow \quad M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_F} (1 + \Delta r)$$

$$\frac{G_F}{\sqrt{2}} = \frac{e^2}{8M_W^2 s_W^2} (1 + \Delta r) \quad \Rightarrow \quad M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_F} (1 + \Delta r)$$

$$M_W^2 = M_Z^2 \left[\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\pi \alpha}{\sqrt{2} G_F M_Z^2}} \left(1 + \Delta r (M_W^2, M_Z^2, m_h^2, m_t^2, \cdots) \right) \right]$$

At one loop

$$\Delta r^{(1)} = 2\delta^{(1)} Z_e + \frac{\Sigma_{WW}^{(1)}(p^2 = 0) - \delta^{(1)} M_W^2}{M_W^2} - \frac{\delta^{(1)} s_W^2}{s_W^2} + \{\text{vertex + box corrections}\}$$

 Σ_{ww} : transverse part of the W-boson self-energy, $\delta^{(1)}X$: 1L counterterm to quantity X

One can show that

$$\delta^{(1)} Z_e \simeq \frac{1}{2} \Delta \alpha + \cdots \quad \text{and} \quad \frac{\delta^{(1)} s_W^2}{s_W^2} \simeq \frac{c_W^2}{s_W^2} \Delta \rho^{(1)}$$
with
$$\Delta \alpha = \frac{\partial}{\partial p^2} \Sigma_{\gamma\gamma} \big|_{p^2 = 0} - \frac{\text{Re} \Sigma_{\gamma\gamma} (p^2 = M_Z^2)}{M_Z^2}$$

Leading terms can be rewritten as [Sirlin '80]

$$\Delta r^{\alpha} = \Delta \alpha - \frac{c_W^2}{s_W^2} \Delta \rho^{(1)} + \Delta r_{\text{remainder}}(m_h)$$

with $\Delta\alpha$: contribution from light fermion loops to photon vacuum polarisation $\Delta \rho$: corrections to the ρ parameter

$$\rho \equiv \frac{G_{\text{NC}}}{G_{\text{CC}}} \quad \Rightarrow \quad \rho^{(0)} = \frac{M_W^2}{c_W^2 M_Z^2} = 1 \text{ and } \Delta \rho^{(1)} = \frac{\Sigma_{ZZ}^{(1)}(p^2 = 0)}{M_Z^2} - \frac{\Sigma_{WW}^{(1)}(p^2 = 0)}{M_W^2}$$

M_w calculation in the SM III

$$\frac{G_F}{\sqrt{2}} = \frac{e^2}{8M_W^2 s_W^2} (1 + \Delta r) \quad \Rightarrow \quad M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_F} (1 + \Delta r)$$

$$M_W^2 = M_Z^2 \left[\frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\pi \alpha}{\sqrt{2} G_F M_Z^2} \left(1 + \Delta r(M_W^2, M_Z^2, m_h^2, m_t^2, \cdots) \right)} \right]$$

At higher orders

$$\Delta r = \Delta r^{\alpha} + \Delta r^{\alpha \alpha_s} + \Delta r^{\alpha \alpha_s^2} + \Delta r^{\alpha \alpha_s^3 m_t} + \Delta r_{\rm ferm}^{\alpha^2} + \Delta r_{\rm bos}^{\alpha^2} + \Delta r_{\rm ferm}^{G_F^2 \alpha_s m_t^4} + \Delta r_{\rm ferm}^{G_S^3 m_t^6} + \Delta r_{\rm bos}^{G_S^2 \alpha_s m_t^4} + \Delta r_{\rm ferm}^{G_S^3 m_t^6} + \Delta r_{\rm bos}^{G_S^3 m_t^6} + \Delta r_{\rm ferm}^{G_S^3 m_t^6} + \Delta r_{\rm bos}^{G_S^3 m_t^6} + \Delta r_{\rm bos}^{G_S m_t^6} + \Delta r_{\rm bo$$

[Awramik, Czakon, Freitas, Weiglein '03] gives a parametrisation as

$$M_{W} = M_{W}^{0} - c_{1} dH - c_{2} dH^{2} + c_{3} dH^{4} + c_{4} (dh - 1) - c_{5} d\alpha + c_{6} dt - c_{7} dt^{2} - c_{8} dH dt + c_{9} dh dt - c_{10} d\alpha_{s} + c_{11} dZ,$$

with

$$dH = \ln\left(\frac{M_{\rm H}}{100 \text{ GeV}}\right), \quad dh = \left(\frac{M_{\rm H}}{100 \text{ GeV}}\right)^2, \quad dt = \left(\frac{m_{\rm t}}{174.3 \text{ GeV}}\right)^2 - dZ = \frac{M_{\rm Z}}{91.1875 \text{ GeV}} - 1, \quad d\alpha = \frac{\Delta \alpha}{0.05907} - 1, \quad d\alpha_{\rm s} = \frac{\alpha_{\rm s}(M_{\rm Z})}{0.119} - 1,$$

$$\begin{array}{ll} \mathbf{n} \\ \mathrm{dH} = \ln \left(\frac{M_{\mathrm{H}}}{100 \; \mathrm{GeV}} \right), & \mathrm{dh} = \left(\frac{M_{\mathrm{H}}}{100 \; \mathrm{GeV}} \right)^{2}, & \mathrm{dt} = \left(\frac{m_{\mathrm{t}}}{174.3 \; \mathrm{GeV}} \right)^{2} - 1, \\ \mathrm{dZ} = \frac{M_{\mathrm{Z}}}{91.1875 \; \mathrm{GeV}} - 1, & \mathrm{d}\alpha = \frac{\Delta\alpha}{0.05907} - 1, & \mathrm{d}\alpha_{\mathrm{s}} = \frac{\alpha_{\mathrm{s}}(M_{\mathrm{Z}})}{0.119} - 1, \\ \end{array} \quad \begin{array}{ll} M_{\mathrm{W}}^{0} = 80.3779 \; \mathrm{GeV}, & c_{1} = 0.05263 \; \mathrm{GeV}, & c_{2} = 0.010239 \; \mathrm{GeV}, \\ c_{3} = 0.000954 \; \mathrm{GeV}, & c_{4} = -0.000054 \; \mathrm{GeV}, & c_{5} = 1.077 \; \mathrm{GeV}, \\ c_{6} = 0.5252 \; \mathrm{GeV}, & c_{7} = 0.0700 \; \mathrm{GeV}, & c_{8} = 0.004102 \; \mathrm{GeV}, \\ c_{9} = 0.000111 \; \mathrm{GeV}, & c_{10} = 0.0774 \; \mathrm{GeV}, & c_{11} = 115.0 \; \mathrm{GeV}, \end{array}$$

Note: Δr also serves to extract the Higgs VEV from G₋

$$v^2 = \frac{1}{\sqrt{2}G_E}(1 + \Delta r)$$

M_w calculation beyond the SM

- Idea of the calculation remains the same, but full theory calculation (that is matched with the Fermi theory one) is now done in the BSM model
- > In BSM models, M_W (→ muon decay) can receive contributions both at **tree level** and at **loop level**. Considering a model with both sources (and turning to $\overline{\rm MS}$ for simplicity just here), one can write at 1L [Athron et al. 1710.03760, 2204.05285] $M_W^2 \Big|^{\overline{\rm MS}} = (M_W^{\rm SM}|^{\overline{\rm MS}})^2 \Big\{ 1 + \frac{s_W^2}{c_W^2 s_W^2} \Big[\frac{c_W^2}{s_W^2} (\Delta \rho_{\rm tree} + \Delta \rho_{\rm loop}^{\rm BSM}) \Delta r_{\rm remainder}^{\rm BSM} \Delta \alpha^{\rm BSM} \Big] \Big\}$
- In the following, we will only discuss models with $\rho^{(0)}=1$, and we stay in **OS scheme**
- Some 2L corrections to Δρ known in BSM models
 - \rightarrow O($\alpha\alpha_s$) SUSY corrections in [Djouadi et al. '96, '98]
 - $> O(\alpha_1^2, \alpha_1 \alpha_2, \alpha_2^2)$ in MSSM in [Heinemeyer, Weiglein '02], [Hastier, Heinemeyer, Stöckinger, Weiglein '05]
 - BSM scalar + top quark corrections in (aligned) 2HDM and IDM [Hessenberger, Hollik '16]
- ightharpoonup Inclusion of known higher-order SM corrections crucial $\Delta r = \Delta r^{
 m SM} + \Delta r^{
 m BSM}$
- \rightarrow Calculations of M_w with Δ r to full BSM 1L + partial BSM 2L (from resummation and Δ p) + SM up to 4L
 - MSSM [Heinemeyer, Hollik, Weiglein, Zeune '13]
 - NMSSM [Stål, Weiglein, Zeune '15]
 - MRSSM [Diessner, Weiglein '19]
 - 2HDM & IDM [Hessenberger '18] (TUM thesis and code THDM_EWPOS)

Addendum 4: Calculations of λ_{hhh}

DESY.

An effective Higgs trilinear coupling

In principle: consider 3-point function Γ_{hhh} but this is momentum dependent \rightarrow very difficult beyond one loop

Instead, consider an effective trilinear coupling

$$\lambda_{hhh} \equiv \left. \frac{\partial^3 V_{\text{eff}}}{\partial h^3} \right|_{\text{min}}$$

entering the coupling modifier

$$\kappa_{\lambda} = \frac{\lambda_{hhh}}{(\lambda_{hhh}^{(0)})^{\text{SM}}} \qquad \text{with } (\lambda_{hhh}^{(0)})^{\text{SM}} = \frac{3m_h^2}{v}$$

constrained by experiments (applicability of this assumption discussed later)

Effective-potential calculation

[JB, Kanemura '19]

> Step 1: compute
$$V_{\text{eff}} = V^{(0)} + \frac{1}{16\pi^2}V^{(1)} + \frac{1}{(16\pi^2)^2}V^{(2)}$$
 (MS result)

- → V⁽²⁾: 1PI vacuum bubbles
- → Dominant BSM contributions to $V^{(2)}$ = diagrams involving heavy BSM scalars and top quark
- → Neglect masses of light states (SM-like Higgs, light fermions, ...)

Effective-potential calculation

[JB, Kanemura '19]

> Step 1: compute
$$V_{\rm eff}=V^{(0)}+\frac{1}{16\pi^2}V^{(1)}+\frac{1}{(16\pi^2)^2}V^{(2)}$$
 (MS result)

- → V⁽²⁾: 1PI vacuum bubbles
- → Dominant BSM contributions to $V^{(2)}$ = diagrams involving heavy BSM scalars and top quark

> Step 2: derive an effective trilinear coupling

$$\frac{\lambda_{hhh}}{\text{(MS result too)}} \equiv \frac{\partial^3 V_{\text{eff}}}{\partial h^3} \bigg|_{\text{min.}} = \frac{3[M_h^2]_{V_{\text{eff}}}}{v} + \left[\frac{\partial^3}{\partial h^3} - \frac{3}{v} \left(\frac{\partial^2}{\partial h^2} - \frac{1}{v} \frac{\partial}{\partial h}\right)\right] \Delta V \bigg|_{\text{min.}}$$

Express tree-level result in terms of effective-potential Higgs mass

Effective-potential calculation

[JB, Kanemura '19]

> Step 1: compute
$$V_{\rm eff} = V^{(0)} + \frac{1}{16\pi^2}V^{(1)} + \frac{1}{(16\pi^2)^2}V^{(2)}$$
 (MS result)

- → V⁽²⁾: 1PI vacuum bubbles
- → Dominant BSM contributions to $V^{(2)}$ = diagrams involving heavy BSM scalars and top quark

Step 2:
$$\lambda_{hhh} \equiv \left. \frac{\partial^3 V_{\rm eff}}{\partial h^3} \right|_{\rm min.} = \left. \frac{3[M_h^2]_{V_{\rm eff}}}{v} + \left[\frac{\partial^3}{\partial h^3} - \frac{3}{v} \left(\frac{\partial^2}{\partial h^2} - \frac{1}{v} \frac{\partial}{\partial h} \right) \right] \Delta V \right|_{\rm min}$$
 (MS result too)

- > **Step 3**: conversion from \overline{MS} to OS scheme
 - \Rightarrow Express result in terms of **pole masses**: M_t, M_h, M_{Φ} (Φ =H,A,H $^{\pm}$); OS Higgs VEV $v_{\rm phys} = \frac{1}{\sqrt{\sqrt{2}G_F}}$
 - o Include finite WFR: $\hat{\lambda}_{hhh} = (Z_h^{\mathrm{OS}}/Z_h^{\overline{\mathrm{MS}}})^{3/2}\lambda_{hhh}$
 - ightharpoonup Prescription for M to ensure **proper decoupling** with $M_\Phi^2 = \tilde{M}^2 + \tilde{\lambda}_\Phi v^2$ and $\tilde{M} \to \infty$

Our results in the aligned 2HDM

Taking degenerate BSM scalar masses: $M_{\phi} = M_{H} = M_{A} = M_{H}^{\pm}$

$\lambda_{\mbox{\tiny hhh}}$ at two loops in more models

- Calculations in several other models: Inert Doublet Model (IDM), singlet extension of SM
- Each model contains a **new parameter appearing from two loops**:

 $tan\beta$ constrained by perturbative unitarity \rightarrow only small effects

 λ_2 is less contrained \rightarrow enhancement is possible (but 2L effects remain <u>well smaller</u> than 1L ones)

 M_{Φ} [GeV]

Constraining BSM models with λ_{hhh}

i. Can we apply the limits on κ_{λ} , extracted from experimental searches for di-Higgs production, for BSM models?

ii. Can large BSM deviations occur for points still allowed in light of theoretical and experimental constraints? If so, how large can they become?

As a concrete example, we consider an aligned 2HDM

Based on

arXiv:2202.03453 (Phys. Rev. Lett.) in collaboration with Henning Bahl and Georg Weiglein

DESY. Page 96

Can we apply di-Higgs results for the aligned 2HDM?

 \succ Current strongest limits on κ_{λ} from ATLAS di-Higgs searches

$$-1.2 < \kappa_{\lambda} < 7.2$$
 [ATLAS-CONF-2024-006]

[where $\kappa_{\lambda} \equiv \lambda_{hhh} / (\lambda_{hhh}^{(0)})^{SM}$]

- What are the assumptions for the ATLAS limits?
 - All other Higgs couplings (to fermions, gauge bosons) are SM-like
 - → this is **ensured by the alignment** ✓
 - The modification of λ_{hhh} is the only source of deviation of the *non-resonant Higgs-pair production cross section* from the SM

- \rightarrow We correctly include all leading BSM effects to di-Higgs production, in powers of $g_{hh\phi\phi}$, up to NNLO! \checkmark
- We can apply the ATLAS limits to our setting!

A parameter scan in the aligned 2HDM

[Bahl, JB, Weiglein PRL '22]

- Our strategy:
 - 1. **Scan BSM parameter space**, keeping only points passing various theoretical and experimental constraints (see below)
 - 2. Identify regions with large BSM deviations in λ_{hhh}
 - 3. Devise a **benchmark scenario** allowing large deviations and investigate impact of experimental limit on λ_{hhh}
- Here: we consider an aligned 2HDM of type-I, but similar results expected for other 2HDM types, or other BSM models with extended Higgs sectors
- Constraints in our parameter scan:
 - 125-GeV Higgs measurements with HiggsSignals
 - Direct searches for BSM scalars with HiggsBounds
 - b-physics constraints, using results from [Gfitter group 1803.01853]

Checked with ScannerS [Mühlleitner et al. 2007.02985]

Checked with ScannerS

- EW precision observables, computed at two loops with THDM_EWPOS [Hessenberger, Hollik '16, '22]
- Vacuum stability
- Boundedness-from-below of the potential
- NLO perturbative unitarity, using results from [Grinstein et al. 1512.04567], [Cacchio et al. 1609.01290]
- For points passing these constraints, we compute κ_{λ} at 1L and 2L, using results from [JB, Kanemura '19]

Parameter scan results

 $\underline{\text{Mean value}} \text{ for } \kappa_{\lambda}^{(2)} = (\lambda_{\text{hhh}}^{(2)})^{\text{2HDM}} / (\lambda_{\text{hhh}}^{(0)})^{\text{SM}} \text{ [left] and } \kappa_{\lambda}^{(2)} / \kappa_{\lambda}^{(1)} = (\lambda_{\text{hhh}}^{(2)})^{\text{2HDM}} / (\lambda_{\text{hhh}}^{(1)})^{\text{2HDM}} \text{ [right] in } (m_{\text{H}} - m_{\text{H}\pm}, m_{\text{A}} - m_{\text{H}\pm}) \text{ plane}$

NB: all previously mentioned constraints are fulfilled by the points shown here

Parameter scan results

 $\underline{\text{Mean value}} \text{ for } \kappa_{\lambda}^{(2)} = (\lambda_{\text{hhh}}^{(2)})^{\text{2HDM}} / (\lambda_{\text{hhh}}^{(0)})^{\text{SM}} \text{ [left] and } \kappa_{\lambda}^{(2)} / \kappa_{\lambda}^{(1)} = (\lambda_{\text{hhh}}^{(2)})^{\text{2HDM}} / (\lambda_{\text{hhh}}^{(1)})^{\text{2HDM}} \text{ [right] in } (m_{\text{H}} - m_{\text{H}\pm}, m_{\text{A}} - m_{\text{H}\pm}) \text{ plane}$

Parameter scan results

 $\underline{\text{Mean value}} \text{ for } \kappa_{\lambda}^{(2)} = (\lambda_{\text{hhh}}^{(2)})^{\text{2HDM}} / (\lambda_{\text{hhh}}^{(0)})^{\text{SM}} \text{ [left] and } \kappa_{\lambda}^{(2)} / \kappa_{\lambda}^{(1)} = (\lambda_{\text{hhh}}^{(2)})^{\text{2HDM}} / (\lambda_{\text{hhh}}^{(1)})^{\text{2HDM}} \text{ [right] in } (m_{\text{H}} - m_{\text{H}\pm}, m_{\text{A}} - m_{\text{H}\pm}) \text{ plane}$

- 2L corrections can become significant (up to ~70% of 1L)
- Huge enhancements (by a factor ~10) of λ_{hhh} possible for $m_A \sim m_{H\pm}$ and $m_H \sim M$

A benchmark scenario in the aligned 2HDM

Results shown for aligned 2HDM of type-I, similar for other types (available in backup) We take $m_{A}=m_{H+}$, $M=m_{H}$, $tan\beta=2$

- Grey area: area excluded by other constraints, in particular BSM Higgs searches, boundedness-from-below (BFB), perturbative unitarity
- Light red area: area excluded both by other constraints (BFB, perturbative unitarity) and by $\kappa_{\lambda}^{(2)} > 6.3$ [in region where $\kappa_{\lambda}^{(2)} < -0.4$ the calculation isn't reliable]
- Dark red area: new area that is excluded ONLY by $\kappa_{\lambda}^{(2)} > 6.3$. Would otherwise not be excluded!
- P Blue hatches: area excluded by $κ_λ^{(1)} > 6.3$ → impact of including 2L corrections is significant!

A benchmark scenario in the aligned 2HDM

Results shown for aligned 2HDM of type-I, similar for other types (available in backup) We take $m_{A}=m_{H+}$, $M=m_{H}$, $tan\beta=2$

- Grey area: area excluded by other constraints, in particular BSM Higgs searches, boundedness-from-below (BFB), perturbative unitarity
- Light red area: area excluded both by other constraints (BFB, perturbative unitarity) and by $\kappa_{\lambda}^{(2)} > 6.3$ [in region where $\kappa_{\lambda}^{(2)} < -0.4$ the calculation isn't reliable]
- Dark red area: new area that is excluded ONLY by $\kappa_{\lambda}^{(2)} > 6.3$. Would otherwise not be excluded!
- Blue hatches: area excluded by $\kappa_{\lambda}^{(1)} > 6.3$ → impact of including 2L corrections is significant!

A benchmark scenario in the aligned 2HDM – future prospects

Suppose for instance the upper bound on κ_{λ} becomes $\kappa_{\lambda} < 2.3$

[Bahl, JB, Weiglein '23]

- Fig. 6. Golden area: additional exclusion if the limit on κ_{λ} becomes $\kappa_{\lambda}^{(2)} < 2.3$ (achievable at HL-LHC)
- Of course, prospects even better with an e+ecollider!
- Experimental constraints, such as Higgs physics, may also become more stringent, however **not** theoretical constraints (like BFB or perturbative unitarity)

A benchmark scenario in the aligned 2HDM - 1D scan

Within the previously shown plane, we fix $M=m_{H}=600$ GeV, and vary $m_{A}=m_{H\pm}$

[Bahl, JB, Weiglein PRL '22]

- Illustrates the significantly improved reach of the experimental limit when including **2L corrections** in calculation of κ_{λ}
- A stricter choice for the perturbative unitarity constraint (grey) does not significantly change the region excluded by $\kappa_{\lambda}^{(2)}$

A benchmark scenario in the aligned 2HDM – 1D scan

Bound on eigenvalues	$\max(m_A)$ with	$\max(m_A)$ with	$\max(m_A)$ with
	LO pert. unit.	NLO pert. unit.	with finite $\sqrt{s} \in [3 \text{ TeV}, 10 \text{ TeV}]$
$\max(a_i) < 1$	1161 GeV	$1017 \; \mathrm{GeV}$	_
$\max(\mathfrak{Re}(a_i)) < 1$	1161 GeV	1033 GeV	1260 GeV
$\max(a_i) < 0.5$	917 GeV	937 GeV	_
$\max(\mathfrak{Re}(a_i)) < 0.5$	917 GeV	958 GeV	929 GeV
$\max(a_i) < 0.49$	911 GeV	933 GeV	_
$\max(\mathfrak{Re}(a_i)) < 0.49$	911 GeV	956 GeV	922 GeV
$\max(a_i) < 0.45$	889 GeV	912 GeV	_
$\max(\mathfrak{Re}(a_i)) < 0.45$	889 GeV	948 GeV	897 GeV

Table 1: Maximal values of m_A allowed in the benchmark scenario under the constraint of perturbative unitarity, at LO and NLO, and for different upper bounds on the $2 \to 2$ scattering eigenvalues used in the perturbative unitarity constraint. Note that tree-level scattering eigenvalues are all real, so there is no difference between using max or $\Re \mathfrak{e}(\max)$ for the left column.

2HDM benchmark plane – individual theoretical constraints

Constraints shown below are independent of 2HDM type

2HDM benchmark plane – experimental constraints

i.e. Higgs physics (via HiggsBounds and HiggsSignals) and b physics (from [Gfitter group 1803.01853])

2HDM benchmark plane – experimental constraints

i.e. Higgs physics (via HiggsBounds and HiggsSignals) and b physics (from [Gfitter group 1803.01853])

2HDM benchmark plane – results for all types

anyH3: full 1L calculation of λ_{hhh} in any renormalisable model

