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Revolution is Driven by New Tools

“New directions In science are launched by new
tools much more often than by new concepts.
The effect of a concept-driven revolution is to
explain old things in new ways. The effect of a
tool-driven revolution is to discover new things
that have to be explained.”

— Freeman J. Dyson, Imagined Worlds
Harvard University Press (1998)




Evolution of Biological Brains and Artificial Intelligence
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Fig.1| The evolution of biological and artificial intelligence takes place on dramatically different timescales. Any hope of interpreting and understanding Al

will exponentially fade. Some example data points are highlighted in the evolution of biological (red) and artificial (blue) intelligence. The dashed lines represent the
linearregression to these points. The acronyms in the figure are: Pathways Language Model (PaLM), Embeddings from Language Model (ELMo), Bidirectional Encoder
Representations from Transformers (BERT), Generative Pre-trained Transformer (GPT).
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When Will Al Win Us a Nobel Prize?

John J. Hopfield Geoffrey Hinton

The Nobel Prize in Physics 2024 was awarded
jointly to John J. Hopfield and Geofirey Hinton "for
foundational discoveries and inventions that
enable machine learning with artificial neural
networks"
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When Will Al Win Us a Nobel Prize?

* When will machines be able to
 come up with a meaningful and original research project;
» conduct necessary calculations (and perhaps experiment?);
o write up arXiv papers;
* pass peer reviews and publish them in leading journals; and

* perhaps win a Nobel Prize for the breakthrough®?

PHYSICAL

REVIEW LETTERS
a r l V Nobel Prize winning
research for

13 consecutive
years




Google’s Minerva

* Google builds Minerva based upon the Pathways | question: For every a. b, b # a prove that
Language Model (PalLM) and further train the 24 (a +b)2
— > -

neural network on a 118-GB dataset of scientific 2
papers from the arXiv preprint server and web
: : Model output:
pages that contain documents prepared using | 2
- a? +b? a+b\-

LaTeX, MathJax, or other mathematical > > (*27)

typesetting formats. e Rl
» The model is able to communicate using the — a® 4B > 20l

standard mathematical notation. s 9202 + 262 > a? + b + 2ab

i multll-step quantitative reasoning shown to B S 20

be possible

— a’ + b —2ab>0

= (a—b)?* >0

which 1s true, because the square of a real

https://research.google/blog/minerva-solving-quantitative-reasoning-problems- number is pOSitiVC.
with-language-models/
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Google’s Minerva

* |f this makes you feel better, Minerva also makes trivial mistakes, such as:

Question: If /400 = /81 + /n, then what is the value of n?

Model output: We have that /400 = /81 + /n. Therefore, 400 = 81 + n, which gives 319 = n.
Final Answer: The final answer 1s 319.

https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-language-models/
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Google’s Minerva

* |f this makes you feel better, Minerva also makes trivial mistakes, such as:

Question: If /400 = /81 + \/n, then what is the value of n?

Model output: We have that /400 = /81 + y/n. Therefore, 400 = 81 + n, which gives 319 = n.
Final Answer: The final answer 1s 319.

https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-language-models/

* Such a mistake is not uncommon for high school (or even college?) students
after years of training.

* In fact, machines already have a passable understanding of college-level
science (but across many subjects and within a short time of training!).
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Should We Worry About Our Future?

* Over the years, with improved computing power and efficiency, machines have
been shown to surpass human beings in analyzing complicated things (such as
particle physics data, as we will see).

w should we be worried?

* With a possibly fundamentally different way of “understanding” the world (input
data), it will probably be impossible to comprehend or interpret in our way how
machines work.

w should we be worried?

* Probably not.
s \Wwe admire many genius musicians, artists, and scientists around us and do not
know why they are so smart, but never worry about their existence
w just like computers help to revolutionize human life, we should exploit and
embrace the iImmense power of Al to help us explore the Universe
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* Introduction to deep learning

* Full supervision

 Weak supervision — CWola

e Dark valley model — a physical model
* Transfer learning

 Data augmentation

e SumMmary
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Machine Learning

 Machine learning (ML) is the tool used for large-scale data processing and is
well suited for complex datasets with huge numbers of variables and features
(patterns and regularities), especially for deep learning neural networks (NNs).

* The Universal Theorem: Any function can be approximated by a neural network
with at least one hidden layer.

* For a long time, given this theorem and the difficulty in complex networks, people
have restricted themselves to shallow networks with only one hidden layer.

* Recently, people have realized that deeper, more complex networks with many
hidden layers can “understand” higher levels of abstraction better than shallow
layers.
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Resurgence of Neural Networks

* Neural networks (NNs) have resurged in the last decade partly due to:
» faster computers, with the use of GPUs versus the traditional use of CPUs,
* better, deeper algorithms and NN architecture designs, and

* increasingly large datasets being available for training.
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Artificial Neuron

* Different types of artificial neurons are modeled using different activation
functions, which are required to introduce nonlinearity to the process.

parameters to be

fitted or learned weights feed-forward
in an NN model (synaptic gaps)

X b (E wo)

internal state
due to inputs activation function
inputs X W1 (soma) (soma)

(from axons output

(axon)

fla)

of other
neurons)

X W9

weighted
X Wn, iInputs
(dendrites)

backward-propagation
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Common Activation Functions

* The choice of activation function is mostly determined by the nature of the
problems at hand.

flzx) =2 f(x) = tanhx
0 forax<O 1
T) = xr) = r) = max(0,x
f(2) {1 o o) = - f() = max(0,2)

https://ai.plainenglish.io/activation-functions-in-neural-networks-9f0170334bf5
15



Types of Machine Learning

e Supervised learning

* Training data with labels (e.g., recognizing photos of cats and dogs)
 Unsupervised learning

* Training data without labels (e.g., analyze and cluster unlabeled datasets)
* Reinforced learning

e Data from interactions with the environment (e.g., chess and Go games)
 Weakly supervised learning

* When data labeling is infeasible, imperfect, difficult, or expensive.

16



Simple Types of Neural Networks

 Dense neural network (Dense-NN): a network with standard fully-connected
feed-forward layers that take flattened vectors as the input, prototypical for most
tasks; sometimes also called multi-layer perceptron (MLP).

 Recurrent neural network (RNN): a network that deals with sequences of
variable length by defining a recurrence relation over these sequences, suitable
for natural language processing (NLP) and speech recognition tasks.

* Convolutional neural network (CNN)*: a network with special layers that filter
Image data, suitable for computer vision.
w [deal for jet image recognition tasks in collider physics

* Some evidence shows that neurons in CNNs are organized in a way similar to biological cells in
the visual cortex of the human brain.

17



Script Digit Recognition

* One classic example of CNN is training the computer to recognize hand-written
digits (with 60,000 training images and 10,000 testing images, and each image
being normalized to 28x28 pixels and having 256 grey levels).
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Script Digit Recognition Using CNN
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A Higgs to Diphoton Event
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Data recorded. Sun Nov 14 19:31:39 2010 CEST
[ 1323520

Run/Event: 15107
Lumi section: 249
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Outline

* Introduction to deep learning

* Full supervision

 Weak supervision — CWola

e Dark valley model — a physical model
* Transfer learning

 Data augmentation

e Summary
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Higgs Physics Program

» The current Higgs physics program is to determine all the =~ <& . amesrwz
= - . = 8 k.=k, t
Higgs couplings precisely. g o7 T / .
w |ook for any deviations and hints of new physics Cwf At -
» This requires the ability to tell apart the two dominant or, | CEELLE:
production channels (others being even smaller). e, g, BT -
w cf. double-slit experiment 5 12f :
S LI
o' 1 10 10°

Particle mass [GeV]
Pl " ATLAS 2019
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(a) ggF production (b) VBF production
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VBF/GGF Higgs Production

e Questions:

* For each detected Higgs event, how can we efficiently

and correctly determine/label its production mechanism? ™

* Can it be independent of how the Higgs boson decays”?
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Two Observations

* VBF events come with two forward spin-1/2 quark-initiated jets from the hard
process, While GGF jets tend to be spin-1 gluon-initiated initial-state radiation.
w different jet constituent distributions, particularly soft radiation patterns

» Since the Higgs is a color singlet scalar with a narrow width, the Higgs decay
should be factorizable from the VBF or GGF initial state jets, especially for
electroweak final states.

w Higgs decay-independent

(a) ggF production (b) VBF production

25



Using BDT With Human-Engineered Variables
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Event-CNN

* Train a CNN by full supervision to discriminate the two production mechanisms
by examining the final-state images.

* A successful training typically requires at least tens of thousands of samples.

training validation testing
VBF events 105k 20k 33k
GGF events 3k 21k 20k

original image preprocessed image
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Comparison of Classifiers

ROC curves
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Requirements on Training Data

 High-Quality Data: The dataset should be representative of the problem domain
and free of noise or irrelevant features. Preprocessing steps like removing
outliers, handling missing values, standardization by utilizing symmetries, and
balancing class distributions are crucial.

e Sufficient Data: Neural networks typically require large amounts of labeled data
to learn meaningful patterns. When the dataset is small, techniques like transfer
learning or data augmentation can mitigate data scarcity.

* Data Diversity: Samples in the datasets should be sufficiently diverse in
properties in order to help the model generalize better and avoid overfitting to
specific patterns.
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Outline

* Introduction to deep learning

* Full supervision

 Weak supervision — CWola

e Dark valley model — a physical model
* Transfer learning

* Data augmentation

e Summary
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Collider Simulations



Collider Simulations

* Particle experimentalists deal with real data collected
by detectors around colliders.
w just like analyzing real images for CS people
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* Particle experimentalists deal with real data collected
by detectors around colliders.
w just like analyzing real images for CS people

https://www.catbreedslist.com/stories/
what-breed-of-cat-is-garfield.html
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Collider Simulations

» Particle experimentalists deal with real data collected i .‘w' -~
by detectors around colliders. .

w just like analyzing real images for CS people
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https://www.catbreedslist.com/stories/
what-breed-of-cat-is-garfield.html

* As particle theorists, we think we are simulating
verisimilar data using various packages.
w N fact, we have been generating fake data all along
w problems: fixed-order in perturbation (e.g., CalcHEP,
MadGraph), model-dependent showering/hadronization

(e.g., Pythia, Herwig), crude detector simulations (e.g.,
Delphes)
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Collider Simulations

* Particle experimentalists deal with real data collected
by detectors around colliders.

w just like analyzing real images for CS people

https://www.catbreedslist.com/stories/
what-breed-of-cat-is-garfield.html

* As particle theorists, we think we are simulating
verisimilar data using various packages.
w N fact, we have been generating fake data all along
w problems: fixed-order in perturbation (e.g., CalcHEP,
MadGraph), model-dependent showering/hadronization

(e.g., Pythia, Herwig), crude detector simulations (e.g., noees://en wixipediaorg/uiki/
Garfield (character)
Delphes)
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 Use a generative adversarial network (so-called GAN). Louppe, Kagan, Cranmer 2016
w can alleviate model dependence during training, but at the cost of algorithmic
performance and computational resources
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Can We Be More Realistic?

 Use a generative adversarial network (so-called GAN). Louppe, Kagan, Cranmer 2016
w can alleviate model dependence during training, but at the cost of algorithmic
performance and computational resources

* |t would be nice to train directly using real data.
w put real data are unlabeled...

* Introduce classification without labels (CWolLa). Metodiev, Nachman, Thaler 2017
w pbelonging to a broad framework called weak supervision, whose goal is to
learn from partially and/or imperfectly labeled data Herma'ndez-Gonz'alez, Inza, Lozano 2016
w first weak supervision application in particle physics for quark vs gluon
tagging using only class proportions during training; shown to match the
performance of fU”y supervised algorithms Dery, Nachman, Rubbo, Schwartzman 2017/
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A Theorem for CWolLa

» Let X represent a list of observables or an image, used to
distinguish signal S from background B, and define:

+ p«(X): probability distribution of X for the signal,

» pp(X): probability distribution of X for the background.

Mixed Sample 1

00000

OOCO®
OlOIGCIGLE),
OCCO®

©0066

Mixed Sample 2

\o

®O®OG®

®OE®®
OeE®®
®Ee®O®

©C006

/

Classifier

Metodiev, Nachman, Thaler 201/

» Given mixed samples M, and M, defined in terms of pure events of $ and B
(both being identical in the two mixed samples) using the likelihoods

pum, (T) = fips(Z) + (1 — f1) pB(T)
P, (T) = faps(Z) + (1 — f2) pB(T)

with different signal fractions f; > f,, an optimal classifier (most powerful test

statistic) trained to distinguish samples in M; and M, is also optimal for

distinguishing S from B.
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Remarks

* An important feature of CWol.a is that, unlike the learning from label proportions

(LLP) weak supervision, the label proportions f; and f, are not required for
training as long as they are different.

* This theorem only guarantees that the optimal classifier from CWolLa, if reached,
Is the same as the optimal classifier from fully-supervised learning.

» Just like most cases, successful/optimal training for CWolLa also requires a large
amount of samples.

 What happens if available data for the mixed samples are insufficient or limited,
as is often the case of real data for BSM searches?
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Outline

* Introduction to deep learning

* Full supervision

 Weak supervision — CWola

» Dark valley model — a physical model
* Transfer learning

 Data augmentation

e Summary
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Dark Valley Model and Dark Jets

 Assume the existence of a dark confining sector that communicates with the
visible sector via a heavy Z' portal:

Q|

d Parkjet dark quarks
0 d , . | y |
- LD ~7Z,(957" ¢ + 99 IDaV" 4Da)
Z o 2 | |
DF——
respective effective coupling constants
Nnp——-d
_ %D _
d d
_— T
pp = 2" — qpqp y . The LHC signature is a pair of dark jets
d ark/jjet —

with invariant mass consistent with m,.
d

Courtesy of Hugues Beauchesne
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Dark Sector Parameter Choices

e We fix the Z' mass at 5.5 TeV and its width at 10 GeV.
» Try seven dark confining scales A, € {1, 5, 10, 20, 30, 40, 50} GeV.

 Dark vector p, and pseudoscalar 7, masses and two decay scenarios:

m2
D — /576 +1.5—2P Albouy et al 2022

. Indirect Decay (ID): p;, — 7,7, followed by 7, — dd for m, IAp=1.0

. Direct Decay (DD): p;,, 7r;, = dd for m, INp=1.8

» Totally 14 similar “models” from different combinations of the above parameters.
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Dijet Invariant Mass Distributions

Probability distributions

%103 M;; histograrr of signal and background
| - events are assumed to be
16- | peak usu.ally not signal the same in both SR and
: SO prominent backgrout s, which should be valid
1.4- | | | to a good approximation.
. SB SR SB |
v 1.2- | |
= | |
2 1.0- | |
- : :
© ! |
5 0.81 : |
S | . SR:signal region
< 0.6 : | SB: side-band region
| | | m two mixed samples (M, and M,)
- Madgraph 2.7.3 with| 0.4- | | with different signal/background
PDF = NN23LO1 i i fractions
- Pythia 8.307 with 0.2- | :
default settings 0.0 i i
- Delphes 3.4.2with = 74000 4500 5000 5500 6000
default CMS card and jet M; [GeV]

radius R = 0.3 ID; Ap = 10 GeV
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©

Convolutional + Dense Layers

» Prepare each jet image in three resolutions: 25 X 25, 50 X 50, 75 x 75.

* Use the images of the two leading jets as input data.

» Pass each image through a common CNN*, and each returns a score € [0, 1].

* Take the product of these two scores as the output of the full NN.

Image of one Mk
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(c) Average histogram of background.
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Convolutional + Dense Layers

* The convolutional part of the NN is referred to as the feature extractor, and its

weights and biases are collectively labeled as ©).
w10 be transferred later

* The dense layer part of the NN Is referred to as the classifier, and its weights and

biases of the dense layers are collectively labeled as 6.
w t0 be fine-tuned later

(convolutional 2D layer: 64 filters with 5 X 5 kernel size) 9
maxpooling layer: 2 x 2 pool size

convolutional 2D layer: 128 filters with 3 x 3 kernel size

Layers of CNN | maxpooling layer: 2 x 2 pool size @
subnetwork convolutional 2D layer: 128 filters with 3 x 3 kernel size
flatten layer = e e ccccccccccccccccccccccceet e e e e ==
(dense layer: 128 units) x 3 H

dense layer (output): 1 unit
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Results of Regular CWolLa
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Results of Regular CWolLa

try different background efficiencies
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Outline

* Introduction to deep learning

* Full supervision

 Weak supervision — CWola

e Dark valley model — a physical model
* Transfer learning

 Data augmentation

e Summary
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Introduction to Transfer Learning

 The phrase “transfer learning (TL)” comes from psychology.
w g |learner new to a fresh topic (e.g., riding a motorcycle or playing guitar)
typically has a higher learning threshold, while a learner experienced In related
topics (e.qg., riding a bicycle or playing violin) usually has less difficulty in quickly
picking it up

 As an ML technique, TL reuses a pre-trained model developed for one task as
the starting point of a new model for a new task.
m transferring knowledge or experience extracted in the pre-trained model for a
source task/domain to a new model for a target task/domain
- Weights from the pre-trained model used to initialize those of the new model

 TL would only be successful when the features learned from the first model
trained on its task can be generalized and transferred to the second task.

w dataset in the secona training should be sufficiently similar to those In the
first training
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Transfer Learning by Pre-training and Fine-tuning

» Step 1: The NN is first trained to distinguish a sample of pure background from a
pure combination of different signals, which includes all the models mentioned
before, except the benchmark model to be tested.

w pre-training on a large set of simulations as the source data

w 200k S and 200k B events in the SR for training
+ 50k S and 50k B events for validation
w training both ® (from convolutional layers) and @ (from dense layers)

(convolutional 2D layer: 64 filters with 5 x 5 kernel size) 9
maxpooling layer: 2 x 2 pool size

convolutional 2D layer: 128 filters with 3 x 3 kernel size

Layers of CNN | maxpooling layer: 2 x 2 pool size @
subnetwork convolutional 2D layer: 128 filters with 3 x 3 kernel size
flatten layer = c ccceccccccccccccsc e s s e e et - - -
(dense layer: 128 units) x 3 H

dense layer (output): 1 unit
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Transfer Learning by Pre-training and Fine-tuning

» Step 2: The NN is then trained to distinguish the mixed samples (i.e., the SR and
SB regions) using the actual data of the benchmark signal (of the true model) plus
the SM background.

w fine-tuning on the small set of actual data as target data

w freezing © in the convolutional layers and reinitializing and training € in the

dense layers
w fixing the feature extraction part while training the classification part

(convolutional 2D layer: 64 filters with 5 x 5 kernel size) 9
maxpooling layer: 2 x 2 pool size

convolutional 2D layer: 128 filters with 3 x 3 kernel size

Layers of CNN | maxpooling layer: 2 x 2 pool size @
subnetwork convolutional 2D layer: 128 filters with 3 x 3 kernel size
flatten layer = c ccceccccccccccccsc e s s e e et - - -
(dense layer: 128 units) x 3 H

dense layer (output): 1 unit
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Transfer Learning vs Regular CWolLa

Significance after NN cut
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Transfer Learning vs

Regular CWolL.a
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Outline

* Introduction to deep learning

* Full supervision

 Weak supervision — CWola

e Dark valley model — a physical model
* Transfer learning

 Data augmentation

e Summary
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Augmentation Methods

 While there are numerous augmentation methods in the field of computer vision,

we focus on physics-inspired techniqgues related to our study. Wang et al 2024
Dillon, Favaro, Feiden, Modak, and Plehn 2024

* Considering augmentations that capture the symmetries of the physical events
and the experimental resolution or statistical fluctuations in the detector, we
Implement three methods™:

 pr (transverse momentum) smearing;

e jet rotation; and

e a combination of the two.
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pr Smearing and Jet Rotation

» The pr smearing method is used to simulate detector effects in resolution/
response fluctuation effects on the transverse momentum of jet constituents by

resampling the p of jet constituents according to the normal distribution:

pr ~N(pr, f (pr)),  f(pr) = \/0-05210% +1.502py

where f(py) is the energy smearing function applied by Delphes.

* The jet rotation method rotates each jet with respect to its center by a random
angle 0 € |—x, 7] to enlarge the diversity of training datasets.

* Other angle ranges are also studied and the training performance is found to
improve with the range of rotation angles.
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Example of A Jet Image
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Sensitivity Improvement
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Sensitivity Improvement
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Dependence on Augmentation Size
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Dependence on Augmentation Size
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Asymptotic Behavior of Augmentation Size
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Asymptotic Behavior of Augmentation Size
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Summary

 Deep machine learning in particle physics has become an unstoppable trend
and surpassed traditional data analysis methods.
w new tools for us to explore the Universe

 Weak supervision (CWolLa) is an advantageous technige being able to train on
real data and exploiting distinctive signal properties.
m [deal tools for anomaly searches but fail when signals are limited

* We propose to employ the transfer learning (TL) technique and show that it can
drastically improve the performance of CWola searches, particularly in the low-
significance region (because of better identification to exclude background).

* We also propose to employ the data augmentation technique and show that jet

rotation is more effective than p smearing, that a +5 augmentation can already
achieve great results.
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Thank You!



